1
|
Mao X, Yang L, Yu D, Ma T, Ma C, Wang J, Yu Q, Li M. The Vacuole and Mitochondria Patch (vCLAMP) Protein Vam6 is Crucial for Autophagy in Candida albicans. Mycopathologia 2021; 186:477-486. [PMID: 34057669 DOI: 10.1007/s11046-021-00565-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 11/24/2022]
Abstract
Vacuole and mitochondria patches (vCLAMPs) are involved in the stress resistance of yeast, but their exact role in autophagy remains so far unclear. This study, for the first time, investigated the role of the vCLAMP core protein Vam6 in autophagy of Candida albicans. The experiments demonstrated that the deletion of VAM6 led to a growth defect under nitrogen starvation. Also, western blotting revealed that the vam6Δ/Δ mutant attenuated degradation of Atg8 (an autophagy indicator), Lap41 (an indicator of the cytoplasm to vacuole targeting pathway), and Csp37 (a mitophagy indicator). Moreover, the activity of carboxypeptidase Y and the levels of the vacuolar phospholipase Atg15 were significantly decreased in the mutant, which confirmed the defect of autophagy caused by deletion of VAM6. Overall, these results revealed that Vam6 is essential in maintaining the autophagic process under nitrogen starvation, and this provided new insights into the correlation between vCLAMPs and autophagy.
Collapse
Affiliation(s)
- Xiaolong Mao
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Li Yang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Dixiong Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Tianyu Ma
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Congcong Ma
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Jiazhen Wang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of LifeSciences, Nankai University, No. 94, Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
2
|
Kwak MK, Ku M, Kang SO. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Biochim Biophys Acta Gen Subj 2018; 1862:18-39. [DOI: 10.1016/j.bbagen.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022]
|
3
|
Zhang K, Jia C, Yu Q, Xiao C, Dong Y, Zhang M, Zhang D, Zhao Q, Zhang B, Li M. Contribution of VMA5 to vacuolar function, stress response, ion homeostasis and autophagy in Candida albicans. Future Microbiol 2017; 12:1147-1166. [PMID: 28879785 DOI: 10.2217/fmb-2017-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM V-ATPase is a conservative multi-subunit enzyme in eukaryotes and modulates several cellular responses. This study aimed to illustrate the roles of Vma5 in vacuolar function, oxidative stress response, calcium homeostasis, autophagy and virulence. MATERIALS & METHODS The vma5Δ/Δ mutant was obtained using PCR-mediated homologous recombination. The functions of Vma5 were investigated by a series of biochemical and systemic infection methods. RESULTS Disruption of VMA5 led to growth inhibition, vacuolar dysfunction, disturbance of calcium homeostasis and inhibition of calcium-related oxidative stress response. Furthermore, its deletion caused defects in autophagy completion and hyphal development, and resulted in attenuated Candida albicans virulence. CONCLUSION Our findings provide new insights into V-ATPase functions in C. albicans, and reveal a potential candidate for development of antifungal drugs.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Chang Jia
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Qilin Yu
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Chenpeng Xiao
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Yijie Dong
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China.,The State Key Laboratory for Biology of Plant Disease & Insect Pests, Institute of Plant protection, Chinese Academy of Agricultural Sciences, Beijing 100871, China
| | - Meng Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Dan Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Qiang Zhao
- Department of Zoology & Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Biao Zhang
- College of Language & Culture, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Mingchun Li
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| |
Collapse
|
4
|
Rahman S, Yamato I, Saijo S, Mizutani K, Takamuku Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Murata T. Binding interactions of the peripheral stalk subunit isoforms from human V-ATPase. Biosci Biotechnol Biochem 2016; 80:878-90. [PMID: 26865189 DOI: 10.1080/09168451.2015.1135043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mammalian peripheral stalk subunits of the vacuolar-type H(+)-ATPases (V-ATPases) possess several isoforms (C1, C2, E1, E2, G1, G2, G3, a1, a2, a3, and a4), which may play significant role in regulating ATPase assembly and disassembly in different tissues. To better understand the structure and function of V-ATPase, we expressed and purified several isoforms of the human V-ATPase peripheral stalk: E1G1, E1G2, E1G3, E2G1, E2G2, E2G3, C1, C2, H, a1NT, and a2NT. Here, we investigated and characterized the isoforms of the peripheral stalk region of human V-ATPase with respect to their affinity and kinetics in different combination. We found that different isoforms interacted in a similar manner with the isoforms of other subunits. The differences in binding affinities among isoforms were minor from our in vitro studies. However, such minor differences from the binding interaction among isoforms might provide valuable information for the future structural-functional studies of this holoenzyme.
Collapse
Affiliation(s)
- Suhaila Rahman
- a Department of Biological Science and Technology , Tokyo University of Science , Tokyo , Japan
| | - Ichiro Yamato
- a Department of Biological Science and Technology , Tokyo University of Science , Tokyo , Japan
| | - Shinya Saijo
- a Department of Biological Science and Technology , Tokyo University of Science , Tokyo , Japan
| | - Kenji Mizutani
- a Department of Biological Science and Technology , Tokyo University of Science , Tokyo , Japan.,b Department of Chemistry , Graduate School of Science, Chiba University , Chiba , Japan
| | - Yuuki Takamuku
- b Department of Chemistry , Graduate School of Science, Chiba University , Chiba , Japan
| | | | - Noboru Ohsawa
- c RIKEN Systems and Structural Biology Center , Yokohama , Japan
| | - Takaho Terada
- c RIKEN Systems and Structural Biology Center , Yokohama , Japan
| | - Mikako Shirouzu
- c RIKEN Systems and Structural Biology Center , Yokohama , Japan
| | - Shigeyuki Yokoyama
- c RIKEN Systems and Structural Biology Center , Yokohama , Japan.,d Department of Biophysics and Biochemistry , Graduate School of Science, The University of Tokyo , Tokyo , Japan
| | - Takeshi Murata
- b Department of Chemistry , Graduate School of Science, Chiba University , Chiba , Japan.,c RIKEN Systems and Structural Biology Center , Yokohama , Japan.,e Molecular Chirality Research Center, Chiba University , Chiba , Japan.,f JST, PRESTO , Chiba , Japan
| |
Collapse
|
5
|
Dong Y, Yu Q, Chen Y, Xu N, Zhao Q, Jia C, Zhang B, Zhang K, Zhang B, Xing L, Li M. The Ccz1 mediates the autophagic clearance of damaged mitochondria in response to oxidative stress in Candida albicans. Int J Biochem Cell Biol 2015; 69:41-51. [PMID: 26471407 DOI: 10.1016/j.biocel.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/28/2015] [Accepted: 10/07/2015] [Indexed: 10/25/2022]
Abstract
Autophagy plays a critical role in response to numerous cellular stresses, such as nutrient deprivation, hypoxia, starvation and organelle damage. The disruption of autophagy pathway affects multiple aspects of cellular stress response. Here we for the first time identified Ccz1 as an essential component for autophagy in Candida albicans. Our experiments demonstrated that loss of CCZ1 gene led to vacuolar fragmentation and disruption of the autophagy pathway. Our results also suggested that Ccz1 functioned in oxidative stress. In the ccz1Δ/Δ mutant, the levels of reactive oxidative species (ROS) sharply increased under H2O2 treatment. Further studies demonstrated that breakdown of the autophagic clearance pathway led to the accumulation of oxidative stress-damaged mitochondria, and consequently elevated cellular ROS levels in the ccz1Δ/Δ mutant. Furthermore, deletion of CCZ1 led to a significant defect in filamentous development at both 30°C and 37°C. The disruption of CCZ1 gene led to decreased capacity of macrophage killing and increased sensitivity to the macrophages. In addition, the ccz1Δ/Δ mutant exhibited attenuated virulence and decreased fungal burdens in the mouse systemic infection model, indicating that CCZ1 might provide a promising target for antifungal drugs development. In summary, our findings provide new insights into the understanding of autophagy-related gene in C. albicans.
Collapse
Affiliation(s)
- Yijie Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Yulu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Qiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Kai Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Laijun Xing
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
6
|
Okamoto-Terry H, Umeki K, Nakanishi-Matsui M, Futai M. Glu-44 in the amino-terminal α-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly. J Biol Chem 2013; 288:36236-43. [PMID: 24196958 DOI: 10.1074/jbc.m113.506741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The proton (H(+)) pumping vacuolar-type ATPase (V-ATPase) is a rotary enzyme that plays a pivotal role in forming intracellular acidic compartments in eukaryotic cells. In Saccharomyces cerevisiae, the membrane extrinsic catalytic V1 and the transmembrane proton-pumping Vo complexes have been shown to reversibly dissociate upon removal of glucose from the medium. However, the basis of this disassembly is largely unknown. In the earlier study, we have found that the amino-terminal α-helical domain between Lys-33 and Lys-83 of yeast E subunit (Vma4p) in the peripheral stalk of the V1 complex has a role in glucose-dependent VoV1 assembly. Results of alanine-scanning mutagenesis within the domain revealed that the Vma4p Glu-44 is a key residue in VoV1 disassembly. Biochemical analysis on Vma4p Glu-44 to Ala, Asn, Asp, and Gln substitutions indicated that Glu-44 has a role in V-ATPase catalysis. These results suggest that Glu-44 is one of the key functional residues for subunit interaction in the V-ATPase stalk complex that allows both efficient rotation catalysis and assembly.
Collapse
Affiliation(s)
- Haruko Okamoto-Terry
- From the Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Futai Special Laboratory, Yahaba, Iwate 028-3694, Japan
| | | | | | | |
Collapse
|
7
|
Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1711-21. [PMID: 22459334 DOI: 10.1016/j.bbabio.2012.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 01/28/2023]
Abstract
We focus on the rotational catalysis of Escherichia coli F-ATPase (ATP synthase, F(O)F(1)). Using a probe with low viscous drag, we found stochastic fluctuation of the rotation rates, a flat energy pathway, and contribution of an inhibited state to the overall behavior of the enzyme. Mutational analyses revealed the importance of the interactions among β and γ subunits and the β subunit catalytic domain. We also discuss the V-ATPase, which has different physiological roles from the F-ATPase, but is structurally and mechanistically similar. We review the rotation, diversity of subunits, and the regulatory mechanism of reversible subunit dissociation/assembly of Saccharomyces cerevisiae and mammalian complexes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
8
|
Rahman S, Ishizuka-Katsura Y, Arai S, Saijo S, Yamato I, Toyama M, Ohsawa N, Inoue M, Honda K, Terada T, Shirouzu M, Yokoyama S, Iwata S, Murata T. Expression, purification and characterization of isoforms of peripheral stalk subunits of human V-ATPase. Protein Expr Purif 2011; 78:181-8. [PMID: 21356312 DOI: 10.1016/j.pep.2011.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/20/2011] [Accepted: 02/23/2011] [Indexed: 12/29/2022]
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that is involved in both intra- and extracellular acidification processes throughout human body. Subunits constituting the peripheral stalk of the V-ATPase are known to have several isoforms responsible for tissue/cell specific different physiological roles. To study the different interaction of these isoforms, we expressed and purified the isoforms of human V-ATPase peripheral stalk subunits using Escherichia coli cell-free protein synthesis system: E1, E2, G1, G2, G3, C1, C2, H and N-terminal soluble part of a1 and a2 isoforms. The purification conditions were different depending on the isoforms, maybe reflecting the isoform specific biochemical characteristics. The purified proteins are expected to facilitate further experiments to study about the cell specific interaction and regulation and thus provide insight into physiological meaning of the existence of several isoforms of each subunit in V-ATPase.
Collapse
Affiliation(s)
- Suhaila Rahman
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M. The mechanism of rotating proton pumping ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1343-52. [PMID: 20170625 DOI: 10.1016/j.bbabio.2010.02.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 11/27/2022]
Abstract
Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (>400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the beta subunits, or between the beta and gamma subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation.
Collapse
Affiliation(s)
- Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan.
| | | | | | | |
Collapse
|