1
|
Zhao S, Shen L, Li X, Tao Q, Li Z, Xu C, Zhou C, Yang Y, Sang M, Han G, Yu LJ, Kuang T, Shen JR, Wang W. Structural insights into photosystem II supercomplex and trimeric FCP antennae of a centric diatom Cyclotella meneghiniana. Nat Commun 2023; 14:8164. [PMID: 38071196 PMCID: PMC10710467 DOI: 10.1038/s41467-023-44055-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Diatoms are dominant marine algae and contribute around a quarter of global primary productivity, the success of which is largely attributed to their photosynthetic capacity aided by specific fucoxanthin chlorophyll-binding proteins (FCPs) to enhance the blue-green light absorption under water. We purified a photosystem II (PSII)-FCPII supercomplex and a trimeric FCP from Cyclotella meneghiniana (Cm) and solved their structures by cryo-electron microscopy (cryo-EM). The structures reveal detailed organizations of monomeric, dimeric and trimeric FCP antennae, as well as distinct assemblies of Lhcx6_1 and dimeric FCPII-H in PSII core. Each Cm-PSII-FCPII monomer contains an Lhcx6_1, an FCP heterodimer and other three FCP monomers, which form an efficient pigment network for harvesting energy. More diadinoxanthins and diatoxanthins are found in FCPs, which may function to quench excess energy. The trimeric FCP contains more chlorophylls c and fucoxanthins. These diversified FCPs and PSII-FCPII provide a structural basis for efficient light energy harvesting, transfer, and dissipation in C. meneghiniana.
Collapse
Affiliation(s)
- Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lili Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Qiushuang Tao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Caizhe Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Cuicui Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Min Sang
- China National Botanical Garden, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
2
|
Imaizumi K, Ifuku K. Binding and functions of the two chloride ions in the oxygen-evolving center of photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 153:135-156. [PMID: 35698013 DOI: 10.1007/s11120-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Light-driven water oxidation in photosynthesis occurs at the oxygen-evolving center (OEC) of photosystem II (PSII). Chloride ions (Cl-) are essential for oxygen evolution by PSII, and two Cl- ions have been found to specifically bind near the Mn4CaO5 cluster in the OEC. The retention of these Cl- ions within the OEC is critically supported by some of the membrane-extrinsic subunits of PSII. The functions of these two Cl- ions and the mechanisms of their retention both remain to be fully elucidated. However, intensive studies performed recently have advanced our understanding of the functions of these Cl- ions, and PSII structures from various species have been reported, aiding the interpretation of previous findings regarding Cl- retention by extrinsic subunits. In this review, we summarize the findings to date on the roles of the two Cl- ions bound within the OEC. Additionally, together with a short summary of the functions of PSII membrane-extrinsic subunits, we discuss the mechanisms of Cl- retention by these extrinsic subunits.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
3
|
Nagao R, Kato K, Kumazawa M, Ifuku K, Yokono M, Suzuki T, Dohmae N, Akita F, Akimoto S, Miyazaki N, Shen JR. Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex. Nat Commun 2022; 13:1764. [PMID: 35365610 PMCID: PMC8976053 DOI: 10.1038/s41467-022-29294-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs) function as light harvesters in diatoms. The structure of a diatom photosystem II-FCPII (PSII-FCPII) supercomplex have been solved by cryo-electron microscopy (cryo-EM) previously; however, the FCPII subunits that constitute the FCPII tetramers and monomers are not identified individually due to their low resolutions. Here, we report a 2.5 Å resolution structure of the PSII-FCPII supercomplex using cryo-EM. Two types of tetrameric FCPs, S-tetramer, and M-tetramer, are identified as different types of hetero-tetrameric complexes. In addition, three FCP monomers, m1, m2, and m3, are assigned to different gene products of FCP. The present structure also identifies the positions of most Chls c and diadinoxanthins, which form a complicated pigment network. Excitation-energy transfer from FCPII to PSII is revealed by time-resolved fluorescence spectroscopy. These structural and spectroscopic findings provide insights into an assembly model of FCPII and its excitation-energy transfer and quenching processes. Fucoxanthin chlorophyll a/c-binding proteins (FCPs) harvest light energy in diatoms. The authors analyzed a structure of PSII-FCPII supercomplex at high resolution by cryo-EM, which identified each FCP subunit and pigment network in the supercomplex.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Minoru Kumazawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido, 060-0819, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
| | - Naoyuki Miyazaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8577, Japan.
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
4
|
Li Y, Zhang X, Zeng R, Deng X. Characterization of chloroplast genome of the marine diatom Chaetoceros gracilis. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3159-3161. [PMID: 34746392 PMCID: PMC8567887 DOI: 10.1080/23802359.2021.1987171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the present study, the chloroplast genome of Chaetoceros gracilis was sequenced using the PacBio sequencing platform and phylogenetic analysis was conducted using 38 other complete chloroplast genomes of the Bacillariophyta. The chloroplast genome of C. gracilis was 116,421 bp in length with the typical quadripartite structure, including a large single copy (LSC) region of 61,904 bp, a small single copy (SSC) region of 39,367 bp, and a pair of inverted repeats (IR) regions of 7575 bp. The overall GC content of C. gracilis chloroplast genome was 30.79%. This genome encoded 131 genes incuding 93 protein-coding genes, 30 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes. Phylogenetic results exhibited that three Chaetoceros species were clustered together. Chaetoceros gracilis was closely related with Chaetoceros muelleri, and then formed a clade with Chaetoceros simplex with 100% bootstrap value This study will facilitate species identification and study of evolutionary in the family Chaetoceroceae.
Collapse
Affiliation(s)
- Yajun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, P. R. China
| | - Xiuxia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, P. R. China
| | - Ru Zeng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, P. R. China
| | - Xiaodong Deng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, P. R. China
| |
Collapse
|
5
|
Giovagnetti V, Ruban AV. The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:561-575. [PMID: 33068431 DOI: 10.1093/jxb/eraa478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Photosystems possess distinct fluorescence emissions at low (77K) temperature. PSI emits in the long-wavelength region at ~710-740 nm. In diatoms, a successful clade of marine primary producers, the contribution of PSI-associated emission (710-717 nm) has been shown to be relatively small. However, in the pennate diatom Phaeodactylum tricornutum, the source of the long-wavelength emission at ~710 nm (F710) remains controversial. Here, we addressed the origin and modulation of F710 fluorescence in this alga grown under continuous and intermittent light. The latter condition led to a strong enhancement in F710. Biochemical and spectral properties of the photosynthetic complexes isolated from thylakoid membranes were investigated for both culture conditions. F710 emission appeared to be associated with PSI regardless of light acclimation. To further assess whether PSII could also contribute to this emission, we decreased the concentration of PSII reaction centres and core antenna by growing cells with lincomycin, a chloroplast protein synthesis inhibitor. The treatment did not diminish F710 fluorescence. Our data suggest that F710 emission originates from PSI under the conditions tested and is enhanced in intermittent light-grown cells due to increased energy flow from the FCP antenna to PSI.
Collapse
Affiliation(s)
- Vasco Giovagnetti
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Nagao R, Ueno Y, Akimoto S, Shen JR. Effects of CO 2 and temperature on photosynthetic performance in the diatom Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2020; 146:189-195. [PMID: 32114648 DOI: 10.1007/s11120-020-00729-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
CO2 concentration and temperature for growth of photosynthetic organisms are two important factors to ensure better photosynthetic performance. In this study, we investigated the effects of CO2 concentration and temperature on the photosynthetic performance in a marine centric diatom Chaetoceros gracilis. Cells were grown under four different conditions, namely, at 25 °C with air bubbling, at 25 °C with a supplementation of 3% CO2, at 30 °C with air bubbling, and at 30 °C with the CO2 supplementation. It was found that the growth rate of cells at 30 °C with the CO2 supplementation is faster than those at other three conditions. The pigment compositions of cells grown under the different conditions are altered, and fluorescence spectra measured at 77 K also showed different peak positions. A novel fucoxanthin chlorophyll a/c-binding protein complex is observed in the cells grown at 30 °C with the CO2 supplementation but not in the other three types of cells. Since oxygen-evolving activities of the four types of cells are almost unchanged, it is suggested that the CO2 supplementation and growth temperature are involved in the regulation of photosynthetic light-harvesting apparatus in C. gracilis at different degrees. Based on these observations, we discuss the favorable growth conditions for C. gracilis.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
7
|
Kansy M, Volke D, Sturm L, Wilhelm C, Hoffmann R, Goss R. Pre-purification of diatom pigment protein complexes provides insight into the heterogeneity of FCP complexes. BMC PLANT BIOLOGY 2020; 20:456. [PMID: 33023504 PMCID: PMC7539453 DOI: 10.1186/s12870-020-02668-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Although our knowledge about diatom photosynthesis has made huge progress over the last years, many aspects about their photosynthetic apparatus are still enigmatic. According to published data, the spatial organization as well as the biochemical composition of diatom thylakoid membranes is significantly different from that of higher plants. RESULTS In this study the pigment protein complexes of the diatom Thalassiosira pseudonana were isolated by anion exchange chromatography. A step gradient was used for the elution process, yielding five well-separated pigment protein fractions which were characterized in detail. The isolation of photosystem (PS) core complex fractions, which contained fucoxanthin chlorophyll proteins (FCPs), enabled the differentiation between different FCP complexes: FCP complexes which were more closely associated with the PSI and PSII core complexes and FCP complexes which built-up the peripheral antenna. Analysis by mass spectrometry showed that the FCP complexes associated with the PSI and PSII core complexes contained various Lhcf proteins, including Lhcf1, Lhcf2, Lhcf4, Lhcf5, Lhcf6, Lhcf8 and Lhcf9 proteins, while the peripheral FCP complexes were exclusively composed of Lhcf8 and Lhcf9. Lhcr proteins, namely Lhcr1, Lhcr3 and Lhcr14, were identified in fractions containing subunits of the PSI core complex. Lhcx1, Lhcx2 and Lhcx5 proteins co-eluted with PSII protein subunits. The first fraction contained an additional Lhcx protein, Lhcx6_1, and was furthermore characterized by high concentrations of photoprotective xanthophyll cycle pigments. CONCLUSION The results of the present study corroborate existing data, like the observation of a PSI-specific antenna complex in diatoms composed of Lhcr proteins. They complement other data, like e.g. on the protein composition of the 21 kDa FCP band or the Lhcf composition of FCPa and FCPb complexes. They also provide interesting new information, like the presence of the enzyme diadinoxanthin de-epoxidase in the Lhcx-containing PSII fraction, which might be relevant for the process of non-photochemical quenching. Finally, the high negative charge of the main FCP fraction may play a role in the organization and structure of the native diatom thylakoid membrane. Thus, the results present an important contribution to our understanding of the complex nature of the diatom antenna system.
Collapse
Affiliation(s)
- Marcel Kansy
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Daniela Volke
- Institute for Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Line Sturm
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, Leipzig University, Permoserstraße 15, 04318, Leipzig, Germany
| | - Ralf Hoffmann
- Institute for Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Reimund Goss
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| |
Collapse
|
8
|
Pi X, Zhao S, Wang W, Liu D, Xu C, Han G, Kuang T, Sui SF, Shen JR. The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. Science 2020; 365:365/6452/eaax4406. [PMID: 31371578 DOI: 10.1126/science.aax4406] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
Abstract
Diatoms play important roles in global primary productivity and biogeochemical cycling of carbon, in part owing to the ability of their photosynthetic apparatus to adapt to rapidly changing light intensity. We report a cryo-electron microscopy structure of the photosystem II (PSII)-fucoxanthin (Fx) chlorophyll (Chl) a/c binding protein (FCPII) supercomplex from the centric diatom Chaetoceros gracilis The supercomplex comprises two protomers, each with two tetrameric and three monomeric FCPIIs around a PSII core that contains five extrinsic oxygen-evolving proteins at the lumenal surface. The structure reveals the arrangement of a huge pigment network that contributes to efficient light energy harvesting, transfer, and dissipation processes in the diatoms.
Collapse
Affiliation(s)
- Xiong Pi
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Desheng Liu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Caizhe Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China. .,Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Nagao R, Yokono M, Ueno Y, Shen JR, Akimoto S. Excitation-Energy Transfer and Quenching in Diatom PSI-FCPI upon P700 Cation Formation. J Phys Chem B 2020; 124:1481-1486. [DOI: 10.1021/acs.jpcb.0c00715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Makio Yokono
- Innovation Center, Nippon Flour Mills Company Ltd., Atsugi 243-0041, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Litvín R, Bína D, Herbstová M, Pazderník M, Kotabová E, Gardian Z, Trtílek M, Prášil O, Vácha F. Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila). PHOTOSYNTHESIS RESEARCH 2019; 142:137-151. [PMID: 31375979 DOI: 10.1007/s11120-019-00662-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.
Collapse
Affiliation(s)
- Radek Litvín
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Miroslava Herbstová
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Marek Pazderník
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Eva Kotabová
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Martin Trtílek
- PSI (Photon Systems Instruments), spol. s r.o. Drásov 470, 664 24, Drásov, Czech Republic
| | - Ondřej Prášil
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - František Vácha
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
11
|
Kato K, Nagao R, Jiang TY, Ueno Y, Yokono M, Chan SK, Watanabe M, Ikeuchi M, Shen JR, Akimoto S, Miyazaki N, Akita F. Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy. Nat Commun 2019; 10:4929. [PMID: 31666526 PMCID: PMC6821847 DOI: 10.1038/s41467-019-12942-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022] Open
Abstract
Photosystem I (PSI) functions to harvest light energy for conversion into chemical energy. The organisation of PSI is variable depending on the species of organism. Here we report the structure of a tetrameric PSI core isolated from a cyanobacterium, Anabaena sp. PCC 7120, analysed by single-particle cryo-electron microscopy (cryo-EM) at 3.3 Å resolution. The PSI tetramer has a C2 symmetry and is organised in a dimer of dimers form. The structure reveals interactions at the dimer-dimer interface and the existence of characteristic pigment orientations and inter-pigment distances within the dimer units that are important for unique excitation energy transfer. In particular, characteristic residues of PsaL are identified to be responsible for the formation of the tetramer. Time-resolved fluorescence analyses showed that the PSI tetramer has an enhanced excitation-energy quenching. These structural and spectroscopic findings provide insights into the physiological significance of the PSI tetramer and evolutionary changes of the PSI organisations.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Tian-Yi Jiang
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan
| | - Makio Yokono
- Nippon Flour Mills Co., Ltd., Innovation Center, Kanagawa, 243-0041, Japan
| | - Siu Kit Chan
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Mai Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
| | - Naoyuki Miyazaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.
- Institute for Protein Research, Laboratory of Protein Synthesis and Expression, Osaka University, Osaka, 565-0871, Japan.
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
- Japan Science and Technology Agency, PRESTO, Saitama, 332-0012, Japan.
| |
Collapse
|
12
|
Nagao R, Ueno Y, Yokono M, Shen JR, Akimoto S. Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2019; 141:355-365. [PMID: 30993504 DOI: 10.1007/s11120-019-00639-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/04/2019] [Indexed: 05/12/2023]
Abstract
Controlling excitation energy flow is a fundamental ability of photosynthetic organisms to keep a better performance of photosynthesis. Among the organisms, diatoms have unique light-harvesting complexes, fucoxanthin chlorophyll (Chl) a/c-binding proteins. We have recently investigated light-adaptation mechanisms of a marine centric diatom, Chaetoceros gracilis, by spectroscopic techniques. However, it remains unclear how pennate diatoms regulate excitation energy under different growth light conditions. Here, we studied light-adaptation mechanisms in a marine pennate diatom Phaeodactylum tricornutum grown at 30 µmol photons m-2 s-1 and further incubated for 24 h either in the dark, or at 30 or 300 µmol photons m-2 s-1 light intensity, by time-resolved fluorescence (TRF) spectroscopy. The high-light incubated cells showed no detectable oxygen-evolving activity of photosystem II, indicating the occurrence of a severe photodamage. The photodamaged cells showed alterations of steady-state absorption and fluorescence spectra and TRF spectra compared with the dark and low-light adapted cells. In particular, excitation-energy quenching is significantly accelerated in the photodamaged cells as shown by mean lifetime analysis of the Chl fluorescence. These spectral changes by the high-light treatment may result from arrangements of pigment-protein complexes to maintain the photosynthetic performance under excess light illumination. These growth-light dependent spectral properties in P. tricornutum are largely different from those in C. gracilis, thus providing insights into the different light-adaptation mechanisms between the pennate and centric diatoms.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Makio Yokono
- Nippon Flour Mills Co., Ltd, Innovation Center, Atsugi, 243-0041, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
13
|
Nagao R, Kato K, Suzuki T, Ifuku K, Uchiyama I, Kashino Y, Dohmae N, Akimoto S, Shen JR, Miyazaki N, Akita F. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex. NATURE PLANTS 2019; 5:890-901. [PMID: 31358960 DOI: 10.1038/s41477-019-0477-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/13/2019] [Indexed: 05/07/2023]
Abstract
Light-harvesting antenna systems in photosynthetic organisms harvest solar energy and transfer it to the photosynthetic reaction centres to initiate charge-separation and electron-transfer reactions. Diatoms are one of the important groups of oxyphototrophs and possess fucoxanthin chlorophyll a/c-binding proteins (FCPs) as light harvesters. The organization and association pattern of FCP with the photosystem II (PSII) core are unknown. Here we solved the structure of PSII-FCPII supercomplexes isolated from a diatom, Chaetoceros gracilis, by single-particle cryoelectron microscopy. The PSII-FCPII forms a homodimer. In each monomer, two FCP homotetramers and three FCP monomers are associated with one PSII core. The structure reveals a highly complicated protein-pigment network that is different from the green-type light-harvesting apparatus. Comparing these two systems allows the identification of energy transfer and quenching pathways. These findings provide structural insights into not only excitation-energy transfer mechanisms in the diatom PSII-FCPII, but also changes of light harvesters between the red- and green-lineage oxyphototrophs during evolution.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ikuo Uchiyama
- National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Yasuhiro Kashino
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Osaka, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan.
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
- Japan Science and Technology Agency, PRESTO, Saitama, Japan.
| |
Collapse
|
14
|
Büchel C. Light harvesting complexes in chlorophyll c-containing algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148027. [PMID: 31153887 DOI: 10.1016/j.bbabio.2019.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022]
Abstract
Besides the so-called 'green lineage' of eukaryotic photosynthetic organisms that include vascular plants, a huge variety of different algal groups exist that also harvest light by means of membrane intrinsic light harvesting proteins (Lhc). The main taxa of these algae are the Cryptophytes, Haptophytes, Dinophytes, Chromeridae and the Heterokonts, the latter including diatoms, brown algae, Xanthophyceae and Eustigmatophyceae amongst others. Despite the similarity in Lhc proteins between vascular plants and these algae, pigmentation is significantly different since no Chl b is bound, but often replaced by Chl c, and a large diversity in carotenoids functioning in light harvesting and/or photoprotection is present. Due to the presence of Chl c in most of the taxa the name 'Chl c-containing organisms' has become common, however, Chl b-less is more precise since some harbour Lhc proteins that only bind one type of Chl, Chl a. In recent years huge progress has been made about the occurrence and function of Lhc in diatoms, so-called fucoxanthin chlorophyll proteins (FCP), where also the first molecular structure became available recently. In addition, especially energy transfer amongst the unusual pigments bound was intensively studied in many of these groups. This review summarises the present knowledge about the molecular structure, the arrangement of the different Lhc in complexes, the excitation energy transfer abilities and the involvement in photoprotection of the different Lhc systems in the so-called Chl c-containing organisms. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.
Collapse
Affiliation(s)
- Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany.
| |
Collapse
|
15
|
Zill JC, Kansy M, Goss R, Alia A, Wilhelm C, Matysik J. 15N photo-CIDNP MAS NMR on both photosystems and magnetic field-dependent 13C photo-CIDNP MAS NMR in photosystem II of the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2019; 140:151-171. [PMID: 30194671 DOI: 10.1007/s11120-018-0578-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/24/2018] [Indexed: 05/14/2023]
Abstract
Diatoms contribute about 20-25% to the global marine productivity and are successful autotrophic players in all aquatic ecosystems, which raises the question whether this performance is caused by differences in their photosynthetic apparatus. Photo-CIDNP MAS NMR presents a unique tool to obtain insights into the reaction centres of photosystems (PS), by selective enhancement of NMR signals from both, the electron donor and the primary electron acceptor molecules. Here, we present the first observation of the solid-state photo-CIDNP effect in the pennate diatoms. In comparison to plant PSs, similar spectral patterns have been observed for PS I at 9.4 T and PS II at 4.7 T in the PSs of Phaeodactylum tricornutum. Studies at different magnetic fields reveal a surprising sign change of the 13C photo-CIDNP MAS NMR signals indicating an alternative arrangement of cofactors which allows to quench the Chl a donor triplet state in contrast to the situation in plant PS II. This unusual quenching mechanism is related to a carotenoid molecule in close vicinity to the Chl a donor. In addition to the photo-CIDNP MAS NMR signals arising from the donor and the primary electron acceptor cofactors, a complete set of signals of the imidazole ring ligating to the magnesium of Chl a can be observed.
Collapse
Affiliation(s)
- Jeremias C Zill
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Marcel Kansy
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Reimund Goss
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - A Alia
- Leiden Institute of Chemistry, University of Leiden, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|
16
|
Nagao R, Ueno Y, Akita F, Suzuki T, Dohmae N, Akimoto S, Shen JR. Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2019; 140:141-149. [PMID: 30187302 DOI: 10.1007/s11120-018-0576-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Diatoms are dominant phytoplankton in aquatic environments and have unique light-harvesting apparatus, fucoxanthin chlorophyll a/c-binding protein (FCP). Diatom photosystem I (PSI) interacts with specific FCPs (FCPI); however, it remains unclear how PSI cores receive excitation energy from FCPI. To analyze the energy transfer dynamics, it is necessary to isolate both PSI cores and PSI-FCPI complexes. In this study, we prepared three PSI complexes, which are PSI-FCPI membrane fragments, detergent-solubilized PSI-FCPI supercomplexes and PSI core-like complexes, from the marine centric diatom, Chaetoceros gracilis, and examined their biochemical properties. Both the PSI-FCPI membrane fragments and supercomplexes showed similar subunit compositions including FCPI, whereas the PSI complexes were devoid of most FCPI subunits. The purity and homogeneity of the two detergent-solubilized PSI preparations were verified by clear-native PAGE and electron microscopy. The difference of pigment contents among the three PSI samples was shown by absorption spectra at 77 K. The intensity in the whole spectrum of PSI-FCPI membranes was much higher than those of the other two complexes, while the spectral shape of PSI complexes was similar to that of cyanobacterial PSI core complexes. 77-K fluorescence spectra of the three PSI preparations exhibited different spectral shapes, especially peak positions and band widths. Based on these observations, we discuss the merits of three PSI preparations for evaluating excitation energy dynamics in diatom PSI-FCPI complexes.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama, 700-8530, Japan.
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama, 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama, 700-8530, Japan.
| |
Collapse
|
17
|
Nagao R, Kagatani K, Ueno Y, Shen JR, Akimoto S. Ultrafast Excitation Energy Dynamics in a Diatom Photosystem I-Antenna Complex: A Femtosecond Fluorescence Upconversion Study. J Phys Chem B 2019; 123:2673-2678. [DOI: 10.1021/acs.jpcb.8b12086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kohei Kagatani
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
18
|
Nagao R, Yokono M, Ueno Y, Shen JR, Akimoto S. Low-Energy Chlorophylls in Fucoxanthin Chlorophyll a/c-Binding Protein Conduct Excitation Energy Transfer to Photosystem I in Diatoms. J Phys Chem B 2018; 123:66-70. [DOI: 10.1021/acs.jpcb.8b09253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Makio Yokono
- Nippon Flour Mills Co., Ltd., Innovation Center, Atsugi 243-0041, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
19
|
Derks AK, Bruce D. Rapid regulation of excitation energy in two pennate diatoms from contrasting light climates. PHOTOSYNTHESIS RESEARCH 2018; 138:149-165. [PMID: 30008155 PMCID: PMC6208626 DOI: 10.1007/s11120-018-0558-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/09/2018] [Indexed: 05/26/2023]
Abstract
Non-photochemical quenching (NPQ) is a fast acting photoprotective response to high light stress triggered by over excitation of photosystem II. The mechanism for NPQ in the globally important diatom algae has been principally attributed to a xanthophyll cycle, analogous to the well-described qE quenching of higher plants. This study compared the short-term NPQ responses in two pennate, benthic diatom species cultured under identical conditions but which originate from unique light climates. Variable chlorophyll fluorescence was used to monitor photochemical and non-photochemical excitation energy dissipation during high light transitions; whereas whole cell steady state 77 K absorption and emission were used to measure high light elicited changes in the excited state landscapes of the thylakoid. The marine shoreline species Nitzschia curvilineata was found to have an antenna system capable of entering a deeply quenched, yet reversible state in response to high light, with NPQ being highly sensitive to dithiothreitol (a known inhibitor of the xanthophyll cycle). Conversely, the salt flat species Navicula sp. 110-1 exhibited a less robust NPQ that remained largely locked-in after the light stress was removed; however, a lower amplitude, but now highly reversible NPQ persisted in cells treated with dithiothreitol. Furthermore, dithiothreitol inhibition of NPQ had no functional effect on the ability of Navicula cells to balance PSII excitation/de-excitation. These different approaches for non-photochemical excitation energy dissipation are discussed in the context of native light climate.
Collapse
Affiliation(s)
- Allen K Derks
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, Saint Catharines, ON, L2S 3A1, Canada.
| | - Doug Bruce
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, Saint Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
20
|
Alterations of pigment composition and their interactions in response to different light conditions in the diatom Chaetoceros gracilis probed by time-resolved fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:524-530. [DOI: 10.1016/j.bbabio.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/17/2018] [Accepted: 04/10/2018] [Indexed: 01/02/2023]
|
21
|
Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 2017; 7:13214. [PMID: 29038514 PMCID: PMC5643376 DOI: 10.1038/s41598-017-13575-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.
Collapse
|
22
|
Nagao R, Suzuki T, Dohmae N, Shen JR, Tomo T. Functional role of Lys residues of Psb31 in electrostatic interactions with diatom photosystem II. FEBS Lett 2017; 591:3259-3264. [DOI: 10.1002/1873-3468.12830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Saitama Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Saitama Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Tatsuya Tomo
- Department of Biology; Faculty of Science; Tokyo University of Science; Shinjuku-ku Tokyo Japan
| |
Collapse
|
23
|
Nagao R, Suzuki T, Okumura A, Kihira T, Toda A, Dohmae N, Nakazato K, Tomo T. Electrostatic interaction of positive charges on the surface of Psb31 with photosystem II in the diatom Chaetoceros gracilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:779-785. [DOI: 10.1016/j.bbabio.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/30/2022]
|
24
|
Huang JJ, Lin S, Xu W, Cheung PCK. Occurrence and biosynthesis of carotenoids in phytoplankton. Biotechnol Adv 2017; 35:597-618. [DOI: 10.1016/j.biotechadv.2017.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|
25
|
Bernal-Bayard P, Puerto-Galán L, Yruela I, García-Rubio I, Castell C, Ortega JM, Alonso PJ, Roncel M, Martínez JI, Hervás M, Navarro JA. The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2017; 133:273-287. [PMID: 28032235 DOI: 10.1007/s11120-016-0327-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.
Collapse
Affiliation(s)
- Pilar Bernal-Bayard
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | | | - Inés García-Rubio
- Centro Universitario de la Defensa, Zaragoza, Spain
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Carmen Castell
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Pablo J Alonso
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza & CSIC, Zaragoza, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Jesús I Martínez
- Centro Universitario de la Defensa, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza & CSIC, Zaragoza, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
26
|
Litvín R, Bína D, Herbstová M, Gardian Z. Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. PHOTOSYNTHESIS RESEARCH 2016; 130:137-150. [PMID: 26913864 DOI: 10.1007/s11120-016-0234-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/12/2016] [Indexed: 05/10/2023]
Abstract
We present proteomic, spectroscopic, and phylogenetic analysis of light-harvesting protein (Lhc) function in oleaginous Nannochloropsis oceanica (Eustigmatophyta, Stramenopila). N. oceanica utilizes Lhcs of multiple classes: Lhcr-type proteins (related to red algae LHCI), Lhcv (VCP) proteins (violaxanthin-containing Lhcs related to Lhcf/FCP proteins of diatoms), Lhcx proteins (related to Lhcx/LhcSR of diatoms and green algae), and Lhc proteins related to Red-CLH of Chromera velia. Altogether, 17 Lhc-type proteins of the 21 known from genomic data were found in our proteomic analyses. Besides Lhcr-type antennas, a RedCAP protein and a member of the Lhcx protein subfamily were found in association with Photosystem I. The free antenna fraction is formed by trimers of a mixture of Lhcs of varied origins (Lhcv, Lhcr, Lhcx, and relatives of Red-CLH). Despite possessing several proteins of the Red-CLH-type Lhc clade, N. oceanica is not capable of chromatic adaptation under the same conditions as the diatom Phaeodactylum tricornutum or C. velia. In addition, a naming scheme of Nannochloropsis Lhcs is proposed to facilitate further work.
Collapse
Affiliation(s)
- Radek Litvín
- Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
| | - David Bína
- Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Miroslava Herbstová
- Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Zdenko Gardian
- Biology Centre CAS, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
27
|
Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M. Conversion of photosystem II dimer to monomers during photoinhibition is tightly coupled with decrease in oxygen-evolving activity in the diatom Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2016; 130:83-91. [PMID: 26846772 DOI: 10.1007/s11120-016-0226-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
The rapid turnover of photosystem II (PSII) in diatoms is thought to be at an exceptionally high rate compared with other oxyphototrophs; however, its molecular mechanisms are largely unknown. In this study, we examined the photodamage and repair processes of PSII in the marine centric diatom Chaetoceros gracilis incubated at 30 or 300 μmol photons m-2 s-1 in the presence of a de novo protein-synthesis inhibitor. When de novo protein synthesis was blocked by chloramphenicol (Cm), oxygen-evolving activity gradually decreased even at 30 μmol photons m-2 s-1 and could not be detected at 12 h. PSII inactivation was enhanced by higher illumination. Using Cm-treated cells, the conversion of PSII dimer to monomers was observed by blue native PAGE. The rate of PSII monomerization was very similar to that of the decrease in oxygen-evolving activity under both light conditions. Immunological detection of D1 protein in the Cm-treated cells showed that the rate of D1 degradation was slower than that of the former two events, although it was more rapid than that observed in other oxyphototrophs. Thus, the three accelerated events, especially PSII monomerization, appear to cause the unusually high rate of PSII turnover in diatoms.
Collapse
Affiliation(s)
- Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University, Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Isao Enami
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
28
|
Matsuda K, Shimoda Y, Tanaka A, Ito H. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:365-373. [PMID: 27810676 DOI: 10.1016/j.plaphy.2016.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/18/2016] [Accepted: 10/23/2016] [Indexed: 05/08/2023]
Abstract
Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c2, and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts.
Collapse
Affiliation(s)
- Kaori Matsuda
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Yousuke Shimoda
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan; CREST, Japan Science and Technology Agency, N19 W8, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan; CREST, Japan Science and Technology Agency, N19 W8, Sapporo, 060-0819, Japan.
| |
Collapse
|
29
|
Involvement of the Lhcx protein Fcp6 of the diatom Cyclotella meneghiniana in the macro-organisation and structural flexibility of thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1373-1379. [DOI: 10.1016/j.bbabio.2016.04.288] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 11/18/2022]
|
30
|
Ishihara T, Ifuku K, Yamashita E, Fukunaga Y, Nishino Y, Miyazawa A, Kashino Y, Inoue-Kashino N. Utilization of light by fucoxanthin-chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2015; 126:437-47. [PMID: 26149177 DOI: 10.1007/s11120-015-0170-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/20/2015] [Indexed: 05/23/2023]
Abstract
The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean.
Collapse
Affiliation(s)
- Tomoko Ishihara
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Eiki Yamashita
- Institute of Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuko Fukunaga
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| | - Yuri Nishino
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| | - Atsuo Miyazawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| | - Yasuhiro Kashino
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan.
| | - Natsuko Inoue-Kashino
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kohto, Kamigohri, Ako-gun, Hyogo, 678-1297, Japan
| |
Collapse
|
31
|
Regulation of excitation energy transfer in diatom PSII dimer: How does it change the destination of excitation energy? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1274-82. [DOI: 10.1016/j.bbabio.2015.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022]
|
32
|
Nagao R, Tomo T, Noguchi T. Effects of Extrinsic Proteins on the Protein Conformation of the Oxygen-Evolving Center in Cyanobacterial Photosystem II As Revealed by Fourier Transform Infrared Spectroscopy. Biochemistry 2015; 54:2022-31. [DOI: 10.1021/acs.biochem.5b00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryo Nagao
- Division
of Material Science, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| | - Tatsuya Tomo
- Department
of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka
1-3, Shinjuku-ku, Tokyo 162-8601, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Takumi Noguchi
- Division
of Material Science, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
33
|
Büchel C. Evolution and function of light harvesting proteins. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:62-75. [PMID: 25240794 DOI: 10.1016/j.jplph.2014.04.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 05/10/2023]
Abstract
Photosynthetic eukaryotes exhibit very different light-harvesting proteins, but all contain membrane-intrinsic light-harvesting complexes (Lhcs), either as additional or sole antennae. Lhcs non-covalently bind chlorophyll a and in most cases another Chl, as well as very different carotenoids, depending on the taxon. The proteins fall into two major groups: The well-defined Lhca/b group of proteins binds typically Chl b and lutein, and the group is present in the 'green lineage'. The other group consists of Lhcr/Lhcf, Lhcz and Lhcx/LhcSR proteins. The former are found in the so-called Chromalveolates, where they mostly bind Chl c and carotenoids very efficient in excitation energy transfer, and in their red algae ancestors. Lhcx/LhcSR are present in most Chromalveolates and in some members of the green lineage as well. Lhcs function in light harvesting, but also in photoprotection, and they influence the organisation of the thylakoid membrane. The different functions of the Lhc subfamilies are discussed in the light of their evolution.
Collapse
Affiliation(s)
- Claudia Büchel
- Goethe University Frankfurt, Institute of Molecular Biosciences, Max von Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
34
|
Cormann KU, Bartsch M, Rögner M, Nowaczyk MM. Localization of the CyanoP binding site on photosystem II by surface plasmon resonance spectroscopy. FRONTIERS IN PLANT SCIENCE 2014; 5:595. [PMID: 25414711 PMCID: PMC4220643 DOI: 10.3389/fpls.2014.00595] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/13/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII), a large multi subunit membrane protein complex localized in the thylakoid membrane of cyanobacteria and chloroplasts, is the only known enzyme that catalyzes the light-driven oxidation of water. In addition to the membrane intrinsic part of PSII, efficient oxygen evolution requires soluble protein subunits at its luminal interface. In contrast to the detailed crystal structure of the active cyanobacterial complex the characterization of intermediate PSII species related to its assembly and repair is hampered by their instability or low abundance. As most structural variations of the corresponding PSII species are based on a different set of protein factors bound to the luminal interface of the complex we developed a system for interaction analysis between PSII and its soluble interaction partners based on surface plasmon resonance (SPR) spectroscopy. The assay was validated by the correct localization of the extrinsic PSII proteins PsbO, PsbV, and PsbU on the luminal PSII surface and used to determine the unknown binding position of CyanoP, the cyanobacterial homolog of higher plant PsbP. The CyanoP binding site was clearly localized in the center of PSII at a position, which is occupied by the PsbO subunit in mature PSII complexes. Consistently, we demonstrate selective binding of CyanoP to an inactive PSII assembly intermediate that lacks the extrinsic subunits PsbO, PsbV, and PsbU. These findings suggest, that CyanoP functions in the dynamic lifecycle of PSII, possibly in the association of CP47 and CP43 or in photoactivation of the oxygen-evolving complex.
Collapse
Affiliation(s)
| | | | | | - Marc M. Nowaczyk
- *Correspondence: Marc M. Nowaczyk, Plant Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany e-mail:
| |
Collapse
|
35
|
Nagao R, Yokono M, Tomo T, Akimoto S. Control Mechanism of Excitation Energy Transfer in a Complex Consisting of Photosystem II and Fucoxanthin Chlorophyll a/c-Binding Protein. J Phys Chem Lett 2014; 5:2983-2987. [PMID: 26278247 DOI: 10.1021/jz501496p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fucoxanthin chlorophyll (Chl) a/c-binding protein (FCP) is a unique light-harvesting antenna in diatoms, which are photosynthesizing algae ubiquitous in aquatic environments. However, it is unknown how excitation energy is trapped and quenched in a complex consisting of photosystem II and FCP (PSII-FCPII complex). Here, we report the control mechanism of excitation energy transfer in the PSII-FCPII complexes isolated from a diatom, Chaetoceros gracilis, as revealed by picosecond time-resolved fluorescence spectroscopy. The results showed that Chl-excitation energy is harvested in low-energy Chls near/within FCPII under the 77 K conditions, whereas most of the energy is trapped in reaction center Chls in PSII under the 283 K conditions. Surprisingly, excitation energy quenching was observed in a part of PSII-FCPII complexes with the time constants of hundreds of picosecond, thus indicating the large contribution of FCPII to energy trapping and quenching. On the basis of these results, we discuss the light-harvesting strategy of diatoms.
Collapse
Affiliation(s)
- Ryo Nagao
- †Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Makio Yokono
- ‡Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
| | - Tatsuya Tomo
- §Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan
- ∥PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Seiji Akimoto
- ‡Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
- ⊥JST, CREST, Kobe 657-8501, Japan
| |
Collapse
|
36
|
Nagao R, Yokono M, Teshigahara A, Akimoto S, Tomo T. Light-Harvesting Ability of the Fucoxanthin Chlorophyll a/c-Binding Protein Associated with Photosystem II from the Diatom Chaetoceros gracilis As Revealed by Picosecond Time-Resolved Fluorescence Spectroscopy. J Phys Chem B 2014; 118:5093-100. [DOI: 10.1021/jp502035y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ryo Nagao
- Division
of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Makio Yokono
- Molecular
Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
| | | | - Seiji Akimoto
- Molecular
Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
- JST, CREST, Kobe 657-8501, Japan
| | - Tatsuya Tomo
- Department
of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka
1-3, Shinjuku-ku, Tokyo 162-8601, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
37
|
Chukhutsina VU, Büchel C, van Amerongen H. Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:899-907. [PMID: 24582663 DOI: 10.1016/j.bbabio.2014.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 11/24/2022]
Abstract
Diatoms, which are primary producers in the oceans, can rapidly switch on/off efficient photoprotection to respond to fast light-intensity changes in moving waters. The corresponding thermal dissipation of excess-absorbed-light energy can be observed as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Fluorescence-induction measurements on Cyclotella meneghiniana diatoms show two NPQ processes: qE1 relaxes rapidly in the dark while qE2 remains present upon switching to darkness and is related to the presence of the xanthophyll-cycle pigment diatoxanthin (Dtx). We performed picosecond fluorescence measurements on cells locked in different (quenching) states, revealing the following sequence of events during full development of NPQ. At first, trimers of light-harvesting complexes (fucoxanthin-chlorophyll a/c proteins), or FCPa, become quenched, while being part of photosystem II (PSII), due to the induced pH gradient across the thylakoid membrane. This is followed by (partial) detachment of FCPa from PSII after which quenching persists. The pH gradient also causes the formation of Dtx which leads to further quenching of isolated PSII cores and some aggregated FCPa. In subsequent darkness, the pH gradient disappears but Dtx remains present and quenching partly pertains. Only in the presence of some light the system completely recovers to the unquenched state.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Laboratory of Biophysics, Wageningen University, 6703HA Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Claudia Büchel
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University, 60438 Frankfurt am Main, Germany
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6703HA Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands; MicroSpectroscopy Centre, Wageningen University, 6703HA Wageningen, The Netherlands.
| |
Collapse
|
38
|
Akimoto S, Teshigahara A, Yokono M, Mimuro M, Nagao R, Tomo T. Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1514-21. [PMID: 24530875 DOI: 10.1016/j.bbabio.2014.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 01/10/2023]
Abstract
In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx-Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300fs. Chl c transferred excitation energy to Chl a with time constants of 500-600fs (intra-complex transfer), 600-700fs (intra-complex transfer), and 4-6ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan; Graduate School of Science, Kobe University, Kobe 657-8501, Japan; CREST, Japan Science and Technology Agency (JST), Kobe 657-8501, Japan.
| | | | - Makio Yokono
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan; CREST, Japan Science and Technology Agency (JST), Kobe 657-8501, Japan
| | - Mamoru Mimuro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tatsuya Tomo
- Faculty of Science, Tokyo University of Science, Tokyo 162-8601 Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
39
|
Fucoxanthin-Chlorophyll-Proteins and Non-Photochemical Fluorescence Quenching of Diatoms. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Structure and Functional Heterogeneity of Fucoxanthin-Chlorophyll Proteins in Diatoms. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T. Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. PHOTOSYNTHESIS RESEARCH 2013; 117:281-8. [PMID: 23925427 DOI: 10.1007/s11120-013-9903-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/26/2013] [Indexed: 05/25/2023]
Abstract
Fucoxanthin chlorophyll a/c-binding protein (FCP) is a unique light-harvesting apparatus in diatoms. Several biochemical characteristics of FCP oligomer and trimer from different diatom species have been reported previously. However, the integration of information about molecular organizations and polypeptides of FCP through a comparison among diatoms has not been published. In this study, we used two-dimensional clear-native/SDS-PAGE to compare the oligomeric states and polypeptide compositions of FCP complexes from four diatoms: Chaetoceros gracilis, Thalassiosira pseudonana, Cyclotella meneghiniana, and Phaeodactylum tricornutum. FCP oligomer was found in C. gracilis, T. pseudonana, and C. meneghiniana, but not in P. tricornutum. The oligomerization varied among the three diatoms, although a predominant subunit having similar molecular weight was recovered in each FCP oligomer. These results suggest that the predominant subunit is involved in the formation of high FCP oligomerization in each diatom. In contrast, FCP trimer was found in all the diatoms. The trimerizations were quite similar, whereas the polypeptide compositions were markedly different. On the basis of this information and that from mass spectrometric analyses, the gene products in each FCP complex were identified in T. pseudonana and P. tricornutum. Based on these results, we discuss the role of FCP oligomer and trimer from the four diatoms.
Collapse
Affiliation(s)
- Ryo Nagao
- Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Pagliano C, Saracco G, Barber J. Structural, functional and auxiliary proteins of photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:167-88. [PMID: 23417641 DOI: 10.1007/s11120-013-9803-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 05/06/2023]
Abstract
Photosystem II (PSII) is the water-splitting enzyme complex of photosynthesis and consists of a large number of protein subunits. Most of these proteins have been structurally and functionally characterized, although there are differences between PSII of plants, algae and cyanobacteria. Here we catalogue all known PSII proteins giving a brief description, where possible of their genetic origin, physical properties, structural relationships and functions. We have also included details of auxiliary proteins known at present to be involved in the in vivo assembly, maintenance and turnover of PSII and which transiently bind to the reaction centre core complex. Finally, we briefly give details of the proteins which form the outer light-harvesting systems of PSII in different types of organisms.
Collapse
Affiliation(s)
- Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Torino, Alessandria, Italy,
| | | | | |
Collapse
|
43
|
Nagao R, Suga M, Niikura A, Okumura A, Koua FHM, Suzuki T, Tomo T, Enami I, Shen JR. Crystal Structure of Psb31, a Novel Extrinsic Protein of Photosystem II from a Marine Centric Diatom and Implications for Its Binding and Function. Biochemistry 2013; 52:6646-52. [DOI: 10.1021/bi400770d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Nagao
- Department
of Integrated Sciences in Physics and Biology, College
of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8850, Japan
| | - Michihiro Suga
- Graduate
School of Natural Science and Technology/Faculty of Science, Okayama University, Tsushima Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Ayako Niikura
- Graduate
School of Natural Science and Technology/Faculty of Science, Okayama University, Tsushima Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Akinori Okumura
- Department
of Integrated Sciences in Physics and Biology, College
of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8850, Japan
| | - Faisal Hammad Mekky Koua
- Graduate
School of Natural Science and Technology/Faculty of Science, Okayama University, Tsushima Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Takehiro Suzuki
- Biomolecular
Characterization Team, Discovery Research Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Tatsuya Tomo
- Department
of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka
1-3, Shinjuku-ku, Tokyo 162-8601, Japan
- PRESTO, Japan Science
and Technology Agency (JST), 4-1-8
Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Isao Enami
- Department
of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka
1-3, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jian-Ren Shen
- Graduate
School of Natural Science and Technology/Faculty of Science, Okayama University, Tsushima Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
44
|
Nagao R, Yokono M, Akimoto S, Tomo T. High Excitation Energy Quenching in Fucoxanthin Chlorophyll a/c-Binding Protein Complexes from the Diatom Chaetoceros gracilis. J Phys Chem B 2013; 117:6888-95. [DOI: 10.1021/jp403923q] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryo Nagao
- Department of Integrated Sciences
in Physics and Biology, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku,
Tokyo 156-8550, Japan
| | - Makio Yokono
- Molecular
Photoscience Research
Center, Kobe University, Kobe 657-8501,
Japan
| | - Seiji Akimoto
- Molecular
Photoscience Research
Center, Kobe University, Kobe 657-8501,
Japan
- CREST, Japan Science and Technology Agency (JST), Kobe, 657-8501, Japan
| | - Tatsuya Tomo
- Department of Biology, Faculty
of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan
| |
Collapse
|
45
|
Campbell DA, Hossain Z, Cockshutt AM, Zhaxybayeva O, Wu H, Li G. Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana. PHOTOSYNTHESIS RESEARCH 2013; 115:43-54. [PMID: 23504483 DOI: 10.1007/s11120-013-9809-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 05/13/2023]
Abstract
All oxygenic photoautotrophs suffer photoinactivation of their Photosystem II complexes, at a rate driven by the instantaneous light level. To maintain photosynthesis, PsbA subunits are proteolytically removed from photoinactivated Photosystem II complexes, primarily by a membrane-bound FtsH protease. Diatoms thrive in environments with fluctuating light, such as coastal regions, in part because they enjoy a low susceptibility to photoinactivation of Photosystem II. In a coastal strain of the diatom Thalassiosira pseudonana growing across a range of light levels, active Photosystem II represents only about 42 % of the total Photosystem II protein, with the remainder attributable to photoinactivated Photosystem II awaiting recycling. The rate constant for removal of PsbA protein increases with growth light, in parallel with an increasing content of the FtsH protease relative to the substrate PsbA. An offshore strain of Thalassiosira pseudonana, originating from a more stable light environment, had a lower content of FtsH and slower rate constants for removal of PsbA. We used this data to generate the first estimates for in vivo proteolytic degradation of photoinactivated PsbA per FtsH6 protease, at ~3.9 × 10(-2) s(-1), which proved consistent across growth lights and across the onshore and offshore strains.
Collapse
Affiliation(s)
- Douglas A Campbell
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G7, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Nagao R, Tomo T, Narikawa R, Enami I, Ikeuchi M. Light-independent biosynthesis and assembly of the photosystem II complex in the diatomChaetoceros gracilis. FEBS Lett 2013; 587:1340-5. [DOI: 10.1016/j.febslet.2013.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
47
|
Ikeda Y, Yamagishi A, Komura M, Suzuki T, Dohmae N, Shibata Y, Itoh S, Koike H, Satoh K. Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:529-39. [PMID: 23416844 DOI: 10.1016/j.bbabio.2013.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/30/2022]
Abstract
Intact fucoxanthin (Fucox)-chlorophyll (Chl)-binding protein I-photosystem I supercomplexes (FCPI-PSIs) were prepared by a newly developed simple fast procedure from centric diatoms Chaetoceros gracilis and Thalassiosira pseudonana to study the mechanism of their efficient solar energy accumulation. FCPI-PSI purified from C. gracilis contained 252 Chl a, 23 Chl c, 56 Fucox, 34 diadinoxanthin+diatoxanthin, 1 violaxanthin, 21 ß-carotene, and 2 menaquinone-4 per P700. The complex showed a high electron transfer activity at 185,000μmolmg Chl a(-1)·h(-1) to reduce methyl viologen from added cytochrome c6. We identified 14 and 21 FCP proteins in FCPI-PSI of C. gracilis and T. pseudonana, respectively, determined by N-terminal and internal amino acid sequences and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. PsaO and a red lineage Chla/b-binding-like protein (RedCAP), Thaps3:270215, were also identified. Severe detergent treatment of FCPI-PSI released FCPI-1 first, leaving the FCPI-2-PSI-core complex. FCPI-1 contained more Chl c and showed Chl a fluorescence at a shorter wavelength than FCPI-2, suggesting an excitation-energy transfer from FCPI-1 to FCPI-2 and then to the PSI core. Fluorescence emission spectra at 17K in FCPI-2 varied depending on the excitation wavelength, suggesting two independent energy transfer routes. We formulated a model of FCPI-PSI based on the biochemical assay results.
Collapse
Affiliation(s)
- Yohei Ikeda
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nagao R, Tomo T, Noguchi E, Suzuki T, Okumura A, Narikawa R, Enami I, Ikeuchi M. Proteases are associated with a minor fucoxanthin chlorophyll a/c-binding protein from the diatom, Chaetoceros gracilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2110-7. [DOI: 10.1016/j.bbabio.2012.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
49
|
Lepetit B, Goss R, Jakob T, Wilhelm C. Molecular dynamics of the diatom thylakoid membrane under different light conditions. PHOTOSYNTHESIS RESEARCH 2012; 111:245-57. [PMID: 21327535 DOI: 10.1007/s11120-011-9633-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/01/2011] [Indexed: 05/25/2023]
Abstract
During the last years significant progress was achieved in unraveling molecular characteristics of the thylakoid membrane of different diatoms. With the present review it is intended to summarize the current knowledge about the structural and functional changes within the thylakoid membrane of diatoms acclimated to different light conditions. This aspect is addressed on the level of the organization and regulation of light-harvesting proteins, the dissipation of excessively absorbed light energy by the process of non-photochemical quenching, and the lipid composition of diatom thylakoid membranes. Finally, a working hypothesis of the domain formation of the diatom thylakoid membrane is presented to highlight the most prominent differences of heterokontic thylakoids in comparison to vascular plants and green algae during the acclimation to low and high light conditions.
Collapse
Affiliation(s)
- Bernard Lepetit
- CNRS UMR6250 'LIENSs', Institute for Coastal and Environmental Research (ILE), University of La Rochelle, 2 rue Olympe de Gouges, 17042, La Rochelle cedex, France
| | | | | | | |
Collapse
|
50
|
Roncel M, Kirilovsky D, Guerrero F, Serrano A, Ortega JM. Photosynthetic cytochrome c550. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1152-63. [PMID: 22289879 DOI: 10.1016/j.bbabio.2012.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/31/2011] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
Cytochrome c550 (cyt c550) is a membrane component of the PSII complex in cyanobacteria and some eukaryotic algae, such as red and brown algae. Cyt c550 presents a bis-histidine heme coordination which is very unusual for monoheme c-type cytochromes. In PSII, the cyt c550 with the other extrinsic proteins stabilizes the binding of Cl(-) and Ca(2+) ions to the oxygen evolving complex and protects the Mn(4)Ca cluster from attack by bulk reductants. The role (if there is one) of the heme of the cyt c550 is unknown. The low midpoint redox potential (E(m)) of the purified soluble form (from -250 to -314mV) is incompatible with a redox function in PSII. However, more positive values for the Em have been obtained for the cyt c550 bound to the PSII. A very recent work has shown an E(m) value of +200mV. These data open the possibility of a redox function for this protein in electron transfer in PSII. Despite the long distance (22Å) between cyt c550 and the nearest redox cofactor (Mn(4)Ca cluster), an electron transfer reaction between these components is possible. Some kind of protective cycle involving a soluble redox component in the lumen has also been proposed. The aim of this article is to review previous studies done on cyt c550 and to consider its function in the light of the new results obtained in recent years. The emphasis is on the physical properties of the heme and its redox properties. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain.
| | | | | | | | | |
Collapse
|