1
|
Reinot T, Khmelnitskiy A, Zazubovich V, Toporik H, Mazor Y, Jankowiak R. Frequency-Domain Spectroscopic Study of the Photosystem I Supercomplexes, Isolated IsiA Monomers, and the Intact IsiA Ring. J Phys Chem B 2022; 126:6891-6910. [PMID: 36065077 DOI: 10.1021/acs.jpcb.2c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PSI3-IsiA18 supercomplex is one of the largest and most complicated assemblies in photosynthesis. The IsiA ring, composed of 18 IsiA monomers (IsiA18) surrounding the PSI trimer (PSI3), forms under iron-deficient conditions in cyanobacteria and acts as a peripheral antenna. Based on the supercomplex structure recently determined via cryo-EM imaging, we model various optical spectra of the IsiA monomers and IsiA18 ring. Comparison of the absorption and emission spectra of the isolated IsiA monomers and the full ring reveals that about 2.7 chlorophylls (Chls) are lost in the isolated IsiA monomers. The best fits for isolated monomers spectra are obtained assuming the absence of Chl 508 and Chl 517 and 70% loss of Chl 511. The best model describing all three hexamers and the entire ring suggests that the lowest energy pigments are Chls 511, 514, and 517. Based on the modeling results presented in this work, we conclude that there are most likely three entry points for EET from the IsiA6 hexamer to the PSI core monomer, with two of these entry points likely being located next to each other (i.e., nine entry points from IsiA18 to the PSI3 trimer). Finally, we show that excitation energy transfer inside individual monomers is fast (<2 ps at T = 5 K) and at least 20 times faster than intermonomer energy transfer.
Collapse
Affiliation(s)
| | | | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal, H4B 1R6, Canada
| | - Hila Toporik
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuval Mazor
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287, United States
| | | |
Collapse
|
2
|
Chen M, He Y, Liu D, Tian L, Xu P, Liu X, Pan Y, Dong S, He J, Zhang Y. Structure Insights Into Photosystem I Octamer From Cyanobacteria. Front Microbiol 2022; 13:876122. [PMID: 35633660 PMCID: PMC9130954 DOI: 10.3389/fmicb.2022.876122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The diversity of photosystem oligomers is essential to understanding how photosynthetic organisms adapt to light conditions. Due to its structural and physiological significance, the assembly of the PSI supercomplex has been of great interest recently in terms of both chloroplast and cyanobacteria. In this study, two novel photosystem I supercomplexes were isolated for the first time from the low light incubated culture of filamentous cyanobacterium Anabaena sp. PCC 7120. These complexes were defined as PSI hexamers and octamers through biochemical and biophysical characterization. Their 77K emission spectra indicated that the red forms of chlorophylls seemed not to be affected during oligomerization. By cryo-EM single-particle analysis, a near-atomic (7.0 Å) resolution structure of a PSI octamer was resolved, and the molecular assemblies of a stable PSI octamer were revealed.
Collapse
Affiliation(s)
- Ming Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yujie He
- Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dongyang Liu
- Photosynthesis Research Centre, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lijin Tian
- Photosynthesis Research Centre, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengqi Xu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuan Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yihang Pan
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuqi Dong
- Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jun He
- Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Chen M, Liu X, He Y, Li N, He J, Zhang Y. Diversity Among Cyanobacterial Photosystem I Oligomers. Front Microbiol 2022; 12:781826. [PMID: 35281305 PMCID: PMC8908432 DOI: 10.3389/fmicb.2021.781826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Unraveling the oligomeric states of the photosystem I complex is essential to understanding the evolution and native mechanisms of photosynthesis. The molecular composition and functions of this complex are highly conserved among cyanobacteria, algae, and plants; however, its structure varies considerably between species. In cyanobacteria, the photosystem I complex is a trimer in most species, but monomer, dimer and tetramer arrangements with full physiological function have recently been characterized. Higher order oligomers have also been identified in some heterocyst-forming cyanobacteria and their close unicellular relatives. Given technological progress in cryo-electron microscope single particle technology, structures of PSI dimers, tetramers and some heterogeneous supercomplexes have been resolved into near atomic resolution. Recent developments in photosystem I oligomer studies have largely enriched theories on the structure and function of these photosystems.
Collapse
Affiliation(s)
- Ming Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuan Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yujie He
- Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ningning Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China–UK Institute for Frontier Science, Shenzhen, China
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jun He
- Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China–UK Institute for Frontier Science, Shenzhen, China
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Jia A, Zheng Y, Chen H, Wang Q. Regulation and Functional Complexity of the Chlorophyll-Binding Protein IsiA. Front Microbiol 2021; 12:774107. [PMID: 34867913 PMCID: PMC8635728 DOI: 10.3389/fmicb.2021.774107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
As the oldest known lineage of oxygen-releasing photosynthetic organisms, cyanobacteria play the key roles in helping shaping the ecology of Earth. Iron is an ideal transition metal for redox reactions in biological systems. Cyanobacteria frequently encounter iron deficiency due to the environmental oxidation of ferrous ions to ferric ions, which are highly insoluble at physiological pH. A series of responses, including architectural changes to the photosynthetic membranes, allow cyanobacteria to withstand this condition and maintain photosynthesis. Iron-stress-induced protein A (IsiA) is homologous to the cyanobacterial chlorophyll (Chl)-binding protein, photosystem II core antenna protein CP43. IsiA is the major Chl-containing protein in iron-starved cyanobacteria, binding up to 50% of the Chl in these cells, and this Chl can be released from IsiA for the reconstruction of photosystems during the recovery from iron limitation. The pigment–protein complex (CPVI-4) encoded by isiA was identified and found to be expressed under iron-deficient conditions nearly 30years ago. However, its precise function is unknown, partially due to its complex regulation; isiA expression is induced by various types of stresses and abnormal physiological states besides iron deficiency. Furthermore, IsiA forms a range of complexes that perform different functions. In this article, we describe progress in understanding the regulation and functions of IsiA based on laboratory research using model cyanobacteria.
Collapse
Affiliation(s)
- Anqi Jia
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yanli Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Schoffman H, Keren N. Function of the IsiA pigment-protein complex in vivo. PHOTOSYNTHESIS RESEARCH 2019; 141:343-353. [PMID: 30929163 DOI: 10.1007/s11120-019-00638-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The acclimation of cyanobacterial photosynthetic apparatus to iron deficiency is crucial for their performance under limiting conditions. In many cyanobacterial species, one of the major responses to iron deficiency is the induction of isiA. The function of the IsiA pigment-protein complex has been the subject of intensive research. In this study of the model Synechocystis sp. PCC 6803 strain, we probe the accumulation of the pigment-protein complex and its effects on in vivo photosynthetic performance. We provide evidence that in this organism the dominant factor controlling IsiA accumulation is the intracellular iron concentration and not photo-oxidative stress or redox poise. These findings support the use of IsiA as a tool for assessing iron bioavailability in environmental studies. We also present evidence demonstrating that the IsiA pigment-protein complex exerts only small effects on the performance of the reaction centers. We propose that its major function is as a storage depot able to hold up to 50% of the cellular chlorophyll content during transition into iron limitation. During recovery from iron limitation, chlorophyll is released from the complex and used for the reconstruction of photosystems. Therefore, the IsiA pigment-protein complex can play a critical role not only when cells transition into iron limitation, but also in supporting efficient recovery of the photosynthetic apparatus in the transition back out of the iron-limited state.
Collapse
Affiliation(s)
- Hanan Schoffman
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| |
Collapse
|
6
|
Li ZK, Yin YC, Zhang LD, Zhang ZC, Dai GZ, Chen M, Qiu BS. The identification of IsiA proteins binding chlorophyll d in the cyanobacterium Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2018; 135:165-175. [PMID: 28378245 DOI: 10.1007/s11120-017-0379-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The bioavailable iron in many aquatic ecosystems is extremely low, and limits the growth and photosynthetic activity of phytoplankton. In response to iron limitation, a group of chlorophyll-binding proteins known as iron stress-induced proteins are induced and serve as accessory light-harvesting components for photosystems under iron limitation. In the present study, we investigated physiological features of Acaryochloris marina in response to iron-deficient conditions. The growth doubling time under iron-deficient conditions was prolonged to ~3.4 days compared with 1.9 days under normal culture conditions, accompanied with dramatically decreased chlorophyll content. The isolation of chlorophyll-binding protein complexes using sucrose density gradient centrifugation shows six main green bands and three main fluorescence components of 712, 728, and 748 nm from the iron-deficient culture. The fluorescence components of 712 and 728 nm co-exist in the samples collected from iron-deficient and iron-replete cultures and are attributed to Chl d-binding accessory chlorophyll-binding antenna proteins and also from photosystem II. A new chlorophyll-binding protein complex with its main fluorescence peak at 748 nm was observed and enriched in the heaviest fraction from the samples collected from the iron-deficient culture only. Combining western blotting analysis using antibodies of CP47 (PSII), PsaC (PSI) and IsiA and proteomic analysis on an excised protein band at ~37 kDa, the heaviest fraction (-F6) isolated from iron-deficient culture contained Chl d-bound PSI-IsiA supercomplexes. The PSII-antenna supercomplexes isolated from iron-replete conditions showed two fluorescence peaks of 712 and 728 nm, which can be assigned as 6-transmembrane helix chlorophyll-binding antenna and photosystem II fluorescence, respectively, which is supported by protein analysis of the fractions (F5 and F6).
Collapse
Affiliation(s)
- Zheng-Ke Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Yan-Chao Yin
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Lu-Dan Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Ma F, Zhang X, Zhu X, Li T, Zhan J, Chen H, He C, Wang Q. Dynamic Changes of IsiA-Containing Complexes during Long-Term Iron Deficiency in Synechocystis sp. PCC 6803. MOLECULAR PLANT 2017; 10:143-154. [PMID: 27777125 DOI: 10.1016/j.molp.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 05/26/2023]
Abstract
Iron stress-induced protein A (IsiA), a major chlorophyll-binding protein in the thylakoid membrane, is significantly induced under iron deficiency conditions. Using immunoblot analysis and 77 K fluorescence spectroscopy combined with sucrose gradient fractionation, we monitored dynamic changes of IsiA-containing complexes in Synechocystis sp. PCC 6803 during exposure to long-term iron deficiency. Within 3 days of exposure to iron deficiency conditions, the initially induced free IsiA proteins preferentially conjugated to PS I trimer to form IsiA18-PS I trimers, which serve as light energy collectors for efficiently transmitting energy to PS I. With prolonged iron deficiency, IsiA proteins assembled either into IsiA aggregates or into two other types of IsiA-PS I supercomplexes, namely IsiA-PS I high fluorescence supercomplex (IHFS) and IsiA-PS I low fluorescence supercomplex (ILFS). Further analysis revealed a role for IsiA as an energy dissipater in the IHFS and as an energy collector in the ILFS. The trimeric structure of PS I mediated by PsaL was found to be indispensable for the formation of IHFS/ILFS. Dynamic changes in IsiA-containing complexes in cyanobacteria during long-term iron deficiency may represent an adaptation to iron limitation stress for flexible light energy distribution, which balances electron transfer between PS I and PS II, thus minimizing photooxidative damage.
Collapse
Affiliation(s)
- Fei Ma
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xi Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Tianpei Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
8
|
Sun J, Golbeck JH. The Presence of the IsiA-PSI Supercomplex Leads to Enhanced Photosystem I Electron Throughput in Iron-Starved Cells of Synechococcus sp. PCC 7002. J Phys Chem B 2015; 119:13549-59. [DOI: 10.1021/acs.jpcb.5b02176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Junlei Sun
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology and ‡Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 United States
| |
Collapse
|
9
|
Feng X, Neupane B, Acharya K, Zazubovich V, Picorel R, Seibert M, Jankowiak R. Spectroscopic Study of the CP43′ Complex and the PSI–CP43′ Supercomplex of the Cyanobacterium Synechocystis PCC 6803. J Phys Chem B 2011; 115:13339-49. [DOI: 10.1021/jp206054b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ximao Feng
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Bhanu Neupane
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Khem Acharya
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Rafael Picorel
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Estación Experimental de Aula Dei (CSIC), Zaragoza, Spain
| | - Michael Seibert
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
10
|
Molecular environments of divinyl chlorophylls in Prochlorococcus and Synechocystis: Differences in fluorescence properties with chlorophyll replacement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:471-81. [DOI: 10.1016/j.bbabio.2011.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 02/22/2011] [Accepted: 02/28/2011] [Indexed: 11/21/2022]
|