1
|
Modularity of membrane-bound charge-translocating protein complexes. Biochem Soc Trans 2021; 49:2669-2685. [PMID: 34854900 DOI: 10.1042/bst20210462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023]
Abstract
Energy transduction is the conversion of one form of energy into another; this makes life possible as we know it. Organisms have developed different systems for acquiring energy and storing it in useable forms: the so-called energy currencies. A universal energy currency is the transmembrane difference of electrochemical potential (Δμ~). This results from the translocation of charges across a membrane, powered by exergonic reactions. Different reactions may be coupled to charge-translocation and, in the majority of cases, these reactions are catalyzed by modular enzymes that always include a transmembrane subunit. The modular arrangement of these enzymes allows for different catalytic and charge-translocating modules to be combined. Thus, a transmembrane charge-translocating module can be associated with different catalytic subunits to form an energy-transducing complex. Likewise, the same catalytic subunit may be combined with a different membrane charge-translocating module. In this work, we analyze the modular arrangement of energy-transducing membrane complexes and discuss their different combinations, focusing on the charge-translocating module.
Collapse
|
2
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Schoelmerich MC, Müller V. Energy-converting hydrogenases: the link between H 2 metabolism and energy conservation. Cell Mol Life Sci 2019; 77:1461-1481. [PMID: 31630229 DOI: 10.1007/s00018-019-03329-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
The reversible interconversion of molecular hydrogen and protons is one of the most ancient microbial metabolic reactions and catalyzed by hydrogenases. A widespread yet largely enigmatic group comprises multisubunit [NiFe] hydrogenases, that directly couple H2 metabolism to the electrochemical ion gradient across the membranes of bacteria and of archaea. These complexes are collectively referred to as energy-converting hydrogenases (Ech), as they reversibly transform redox energy into physicochemical energy. Redox energy is typically provided by a low potential electron donor such as reduced ferredoxin to fuel H2 evolution and the establishment of a transmembrane electrochemical ion gradient ([Formula: see text]). The [Formula: see text] is then utilized by an ATP synthase for energy conservation by generating ATP. This review describes the modular structure/function of Ech complexes, focuses on insights into the energy-converting mechanisms, describes the evolutionary context and delves into the implications of relying on an Ech complex as respiratory enzyme for microbial metabolism.
Collapse
Affiliation(s)
- Marie Charlotte Schoelmerich
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.,Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Volker Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
4
|
Abstract
Some anaerobic archaea and bacteria live on substrates that do not allow the synthesis of one mol of ATP per mol of substrate via substrate level phosphorylation (SLP). Energy conservation in these cases is only possible by a chemiosmotic mechanism that involves the generation of an electrochemical ion gradient across the cytoplasmic membrane that then drives ATP synthesis via an ATP synthase. The minimal amount of energy required for ATP synthesis is thus dependent on the magnitude of the electrochemical ion gradient, the phosphorylation potential in the cell and the ion/ATP ratio of the ATP synthase. It was always thought that the minimum biological energy quantum is defined as the amount of energy required to translocate one ion across the cytoplasmic membrane. We will discuss the thermodynamics of the reactions involved in chemiosmosis and describe the limitations for ion transport and ATP synthesis that led to the proposal that at least −20 kJ/mol are required for ATP synthesis. We will challenge this hypothesis by arguing that the enzyme energizing the membrane may translocate net less than one ion: By using a primary pump connected to an antiporter module a stoichiometry below one can be obtained, implying that the minimum biological energy quantum that sustains life is even lower than assumed to date.
Collapse
Affiliation(s)
- Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Verena Hess
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
5
|
Nath S. Analysis of molecular mechanisms of ATP synthesis from the standpoint of the principle of electrical neutrality. Biophys Chem 2017; 224:49-58. [PMID: 28318906 DOI: 10.1016/j.bpc.2017.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/13/2023]
Abstract
Theories of biological energy coupling in oxidative phosphorylation (OX PHOS) and photophosphorylation (PHOTO PHOS) are reviewed and applied to ATP synthesis by an experimental system containing purified ATP synthase reconstituted into liposomes. The theories are critically evaluated from the standpoint of the principle of electrical neutrality. It is shown that the obligatory requirement to maintain overall electroneutrality of bulk aqueous phases imposes strong constraints on possible theories of energy coupling and molecular mechanisms of ATP synthesis. Mitchell's chemiosmotic theory is found to violate the electroneutrality of bulk aqueous phases and is shown to be untenable on these grounds. Purely electroneutral mechanisms or mechanisms where the anion/countercation gradient is dissipated or simply flows through the lipid bilayer are also shown to be inadequate. A dynamically electrogenic but overall electroneutral mode of ion transport postulated by Nath's torsional mechanism of energy transduction and ATP synthesis is shown to be consistent both with the experimental findings and the principle of electrical neutrality. It is concluded that the ATP synthase functions as a proton-dicarboxylic acid anion cotransporter in OX PHOS or PHOTO PHOS. A logical chemical explanation for the selection of dicarboxylic acids as intermediates in OX PHOS and PHOTO PHOS is suggested based on the pioneering classical thermodynamic work of Christensen, Izatt, and Hansen. The nonequilibrium thermodynamic consequences for theories in which the protons originate from water vis-a-vis weak organic acids are compared and contrasted, and several new mechanistic and thermodynamic insights into biological energy transduction by ATP synthase are offered. These considerations make the new theory of energy coupling more complete, and lead to a deeper understanding of the molecular mechanism of ATP synthesis.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Siebels I, Dröse S. Charge translocation by mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica measured on solid-supported membranes. Biochem Biophys Res Commun 2016; 479:277-282. [PMID: 27639643 DOI: 10.1016/j.bbrc.2016.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
The charge translocation by purified reconstituted mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica was investigated after adsorption of proteoliposomes to solid-supported membranes. In presence of n-decylubiquinone (DBQ), pulses of NADH provided by rapid solution exchange induced charge transfer reflecting steady-state pumping activity of the reconstituted enzyme. The signal amplitude increased with time, indicating 'deactive→active' transition of the Yarrowia complex I. Furthermore, an increase of the membrane-conductivity after addition of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) was detected which questiones the use of EIPA as an inhibitor of the Na+/H+-antiporter-like subunits of complex I. This investigation shows that electrical measurements on solid-supported membranes are a suitable method to analyze transport events and 'active/deactive' transition of mitochondrial complex I.
Collapse
Affiliation(s)
- Ilka Siebels
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-University, 60590, Frankfurt am Main, Germany; Goethe University Frankfurt, Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Protein Reaction Control Group, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Stefan Dröse
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-University, 60590, Frankfurt am Main, Germany; Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Castro PJ, Silva AF, Marreiros BC, Batista AP, Pereira MM. Respiratory complex I: A dual relation with H(+) and Na(+)? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:928-37. [PMID: 26711319 DOI: 10.1016/j.bbabio.2015.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Respiratory complex I couples NADH:quinone oxidoreduction to ion translocation across the membrane, contributing to the buildup of the transmembrane difference of electrochemical potential. H(+) is well recognized to be the coupling ion of this system but some studies suggested that this role could be also performed by Na(+). We have previously observed NADH-driven Na(+) transport opposite to H(+) translocation by menaquinone-reducing complexes I, which indicated a Na(+)/H(+) antiporter activity in these systems. Such activity was also observed for the ubiquinone-reducing mitochondrial complex I in its deactive form. The relation of Na(+) with complex I may not be surprising since the enzyme has three subunits structurally homologous to bona fide Na(+)/H(+) antiporters and translocation of H(+) and Na(+) ions has been described for members of most types of ion pumps and transporters. Moreover, no clearly distinguishable motifs for the binding of H(+) or Na(+) have been recognized yet. We noticed that in menaquinone-reducing complexes I, less energy is available for ion translocation, compared to ubiquinone-reducing complexes I. Therefore, we hypothesized that menaquinone-reducing complexes I perform Na(+)/H(+) antiporter activity in order to achieve the stoichiometry of 4H(+)/2e(-). In agreement, the organisms that use ubiquinone, a high potential quinone, would have kept such Na(+)/H(+) antiporter activity, only operative under determined conditions. This would imply a physiological role(s) of complex I besides a simple "coupling" of a redox reaction and ion transport, which could account for the sophistication of this enzyme. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Paulo J Castro
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
8
|
Respiratory complex I fromEscherichia colidoes not transport Na+in the absence of its NuoL subunit. FEBS Lett 2014; 588:4520-5. [DOI: 10.1016/j.febslet.2014.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/23/2022]
|
9
|
Gutiérrez-Sanz O, Olea D, Pita M, Batista AP, Alonso A, Pereira MM, Vélez M, De Lacey AL. Reconstitution of respiratory complex I on a biomimetic membrane supported on gold electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9007-9015. [PMID: 24988043 DOI: 10.1021/la501825r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For the first time, respiratory complex I has been reconstituted on an electrode preserving its structure and activity. Respiratory complex I is a membrane-bound enzyme that has an essential function in cellular energy production. It couples NADH:quinone oxidoreduction to translocation of ions across the cellular (in prokaryotes) or mitochondrial membranes. Therefore, complex I contributes to the establishment and maintenance of the transmembrane difference of electrochemical potential required for adenosine triphosphate synthesis, transport, and motility. Our new strategy has been applied for reconstituting the bacterial complex I from Rhodothermus marinus onto a biomimetic membrane supported on gold electrodes modified with a thiol self-assembled monolayer (SAM). Atomic force microscopy and faradaic impedance measurements give evidence of the biomimetic construction, whereas electrochemical measurements show its functionality. Both electron transfer and proton translocation by respiratory complex I were monitored, simulating in vivo conditions.
Collapse
Affiliation(s)
- Oscar Gutiérrez-Sanz
- Instituto de Catalisis y Petroleoquímica, CSIC, c/Marie Curie 2, L10, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Energy conservation by oxidation of formate to carbon dioxide and hydrogen via a sodium ion current in a hyperthermophilic archaeon. Proc Natl Acad Sci U S A 2014; 111:11497-502. [PMID: 25049407 DOI: 10.1073/pnas.1407056111] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H(+) translocation across the cytoplasmic membrane that then drives Na(+) translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na(+)/H(+) antiporter module. The electrochemical Na(+) gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na(+)/H(+) antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains.
Collapse
|
11
|
Mayer F, Müller V. Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 2014; 38:449-72. [DOI: 10.1111/1574-6976.12043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
|
12
|
Cation transport by the respiratory NADH:quinone oxidoreductase (complex I): facts and hypotheses. Biochem Soc Trans 2014; 41:1280-7. [PMID: 24059520 DOI: 10.1042/bst20130024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The respiratory complex I (electrogenic NADH:quinone oxidoreductase) has been considered to act exclusively as a H+ pump. This was questioned when the search for the NADH-driven respiratory Na+ pump in Klebsiella pneumoniae initiated by Peter Dimroth led to the discovery of a Na+-translocating complex in this enterobacterium. The 3D structures of complex I from different organisms support the idea that the mechanism of cation transport by complex I involves conformational changes of the membrane-bound NuoL, NuoM and NuoN subunits. In vitro methods to follow Na+ transport were compared with in vivo approaches to test whether complex I, or its individual NuoL, NuoM or NuoN subunits, extrude Na+ from the cytoplasm to the periplasm of bacterial host cells. The truncated NuoL subunit of the Escherichia coli complex I which comprises amino acids 1-369 exhibits Na+ transport activity in vitro. This observation, together with an analysis of putative cation channels in NuoL, suggests that there exists in NuoL at least one continuous pathway for cations lined by amino acid residues from transmembrane segments 3, 4, 5, 7 and 8. Finally, we discuss recent studies on Na+ transport by mitochondrial complex I with respect to its putative role in the cycling of Na+ ions across the inner mitochondrial membrane.
Collapse
|
13
|
The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance. Anal Biochem 2013; 445:80-6. [PMID: 24139955 DOI: 10.1016/j.ab.2013.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 11/20/2022]
Abstract
(23)Na nuclear magnetic resonance (NMR) has previously been used to monitor Na(+) translocation across membranes in gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na(+). In this work, the (23)Na NMR method was adapted for measurements of internal Na(+) concentration in the gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na(+) translocation activity of the Mrp (multiple resistance and pH) antiporter complex, a member of the cation proton antiporter-3 (CPA-3) family. The sodium-sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted could indeed be correlated to the inability of this strain to maintain a lower internal Na(+) concentration than an external one.
Collapse
|
14
|
Roberts PG, Hirst J. The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H+ antiporter. J Biol Chem 2012; 287:34743-51. [PMID: 22854968 PMCID: PMC3464577 DOI: 10.1074/jbc.m112.384560] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/23/2012] [Indexed: 11/21/2022] Open
Abstract
In mitochondria, complex I (NADH:ubiquinone oxidoreductase) uses the redox potential energy from NADH oxidation by ubiquinone to transport protons across the inner membrane, contributing to the proton-motive force. However, in some prokaryotes, complex I may transport sodium ions instead, and three subunits in the membrane domain of complex I are closely related to subunits from the Mrp family of Na(+)/H(+) antiporters. Here, we define the relationship between complex I from Bos taurus heart mitochondria, a close model for the human enzyme, and sodium ion transport across the mitochondrial inner membrane. In accord with current consensus, we exclude the possibility of redox-coupled Na(+) transport by B. taurus complex I. Instead, we show that the "deactive" form of complex I, which is formed spontaneously when enzyme turnover is precluded by lack of substrates, is a Na(+)/H(+) antiporter. The antiporter activity is abolished upon reactivation by the addition of substrates and by the complex I inhibitor rotenone. It is specific for Na(+) over K(+), and it is not exhibited by complex I from the yeast Yarrowia lipolytica, which thus has a less extensive deactive transition. We propose that the functional connection between the redox and transporter modules of complex I is broken in the deactive state, allowing the transport module to assert its independent properties. The deactive state of complex I is formed during hypoxia, when respiratory chain turnover is slowed, and may contribute to determining the outcome of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Philippa G. Roberts
- From The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Judy Hirst
- From The Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
15
|
Marreiros BC, Batista AP, Duarte AMS, Pereira MM. A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:198-209. [PMID: 23000657 DOI: 10.1016/j.bbabio.2012.09.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/04/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
Complex I of respiratory chains is an energy transducing enzyme present in most bacteria, mitochondria and chloroplasts. It catalyzes the oxidation of NADH and the reduction of quinones, coupled to cation translocation across the membrane. The complex has a modular structure composed of several proteins most of which are identified in other complexes. Close relations between complex I and group 4 membrane-bound [NiFe] hydrogenases and some subunits of multiple resistance to pH (Mrp) Na(+)/H(+) antiporters have been observed before and the suggestion that complex I arose from the association of a soluble nicotinamide adenine dinucleotide (NAD(+)) reducing hydrogenase with a Mrp-like antiporter has been put forward. In this article we performed a thorough taxonomic profile of prokaryotic group 4 membrane-bound [NiFe] hydrogenases, complexes I and complex I-like enzymes. In addition we have investigated the different gene clustering organizations of such complexes. Our data show the presence of complexes related to hydrogenases but which do not contain the binding site of the catalytic centre. These complexes, named before as Ehr (energy-converting hydrogenases related complexes) are a missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. Based on our observations we put forward a different perspective for the relation between complex I and related complexes. In addition we discuss the evolutionary, functional and mechanistic implications of this new perspective. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
16
|
Batista AP, Marreiros BC, Pereira MM. The role of proton and sodium ions in energy transduction by respiratory complex I. IUBMB Life 2012; 64:492-8. [PMID: 22576956 DOI: 10.1002/iub.1050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/17/2012] [Indexed: 11/08/2022]
Abstract
Respiratory complex I plays a central role in energy transduction. It catalyzes the oxidation of NADH and the reduction of quinone, coupled to cation translocation across the membrane, thereby establishing an electrochemical potential. For more than half a century, data on complex I has been gathered, including recently determined crystal structures, yet complex I is the least understood complex of the respiratory chain. The mechanisms of quinone reduction, charge translocation and their coupling are still unknown. The H(+) is accepted to be the coupling ion of the system; however, Na(+) has also been suggested to perform such a role. In this article, we address the relation of those two ions with complex I and refer ion pump and Na(+)/H(+) antiporter as possible transport mechanisms of the system. We put forward a hypothesis to explain some apparently contradictory data on the nature of the coupling ion, and we revisit the role of H(+) and Na(+) cycles in the overall bioenergetics of the cell.
Collapse
Affiliation(s)
- Ana P Batista
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
17
|
Batista AP, Marreiros BC, Louro RO, Pereira MM. Study of ion translocation by respiratory complex I. A new insight using (23)Na NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1810-6. [PMID: 22445719 DOI: 10.1016/j.bbabio.2012.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
The research on complex I has gained recently a new enthusiasm, especially after the resolution of the crystallographic structures of bacterial and mitochondrial complexes. Most attention is now dedicated to the investigation of the energy coupling mechanism(s). The proton has been identified as the coupling ion, although in the case of some bacterial complexes I Na(+) has been proposed to have that role. We have addressed the relation of some complexes I with Na(+) and developed an innovative methodology using (23)Na NMR spectroscopy. This allowed the investigation of Na(+) transport taking the advantage of directly monitoring changes in Na(+) concentration. Methodological aspects concerning the use of (23)Na NMR spectroscopy to measure accurately sodium transport in bacterial membrane vesicles are discussed here. External-vesicle Na(+) concentrations were determined by two different methods: 1) by integration of the resonance frequency peak and 2) using calibration curves of resonance frequency shift dependence on Na(+) concentration. Although the calibration curves are a suitable way to determine Na(+) concentration changes under conditions of fast exchange, it was shown not to be applicable to the bacterial membrane vesicle systems. In this case, the integration of the resonance frequency peak is the most appropriate analysis for the quantification of external-vesicle Na(+) concentration. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
18
|
A two-state stabilization-change mechanism for proton-pumping complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1364-9. [DOI: 10.1016/j.bbabio.2011.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 04/17/2011] [Accepted: 04/19/2011] [Indexed: 11/18/2022]
|
19
|
Batista AP, Marreiros BC, Pereira MM. Decoupling of the catalytic and transport activities of complex I from Rhodothermus marinus by sodium/proton antiporter inhibitor. ACS Chem Biol 2011; 6:477-83. [PMID: 21268658 DOI: 10.1021/cb100380y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The energy transduction by complex I from Rhodothermusmarinus was addressed by studying the influence of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on the activities of this enzyme. EIPA is an inhibitor of both Na(+)/H(+) antiporter and complex I NADH:quinone oxidoreductase activity. We performed studies of NADH:quinone oxidoreductase and H(+) and Na(+) translocation activities of complex I from R. marinus at different concentrations of EIPA, using inside-out membrane vesicles. We observed that the oxidoreductase activity and both H(+) and Na(+) transports are inhibited by EIPA. Most interestingly, the catalytic and the two transport activities showed different inhibition profiles. The transports are inhibited at concentrations of EIPA at which the catalytic activity is not affected. In this way the catalytic and transport activities were decoupled. Moreover, the inhibition of the catalytic activity was not influenced by the presence of Na(+), whereas the transport of H(+) showed different inhibition behaviors in the presence and absence of Na(+). Taken together our observations indicate that complex I from R. marinus performs energy transduction by two different processes: proton pumping and Na(+)/H(+) antiporting. The decoupling of the catalytic and transport activities suggests the involvement of an indirect coupling mechanism, possibly through conformational changes.
Collapse
Affiliation(s)
- Ana P. Batista
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Bruno C. Marreiros
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Manuela M. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
20
|
Moparthi VK, Kumar B, Mathiesen C, Hägerhäll C. Homologous protein subunits from Escherichia coli NADH:quinone oxidoreductase can functionally replace MrpA and MrpD in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:427-36. [PMID: 21236240 DOI: 10.1016/j.bbabio.2011.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
The complex I subunits NuoL, NuoM and NuoN are homologous to two proteins, MrpA and MrpD, from one particular class of Na+/H+ antiporters. In many bacteria MrpA and MrpD are encoded by an operon comprising 6-7 conserved genes. In complex I these protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Deletion of either mrpA or mrpD from the Bacillus subtilis chromosome resulted in a Na+ and pH sensitive growth phenotype. The deletion strains could be complemented in trans by their respective Mrp protein, but expression of MrpA in the B. subtilis ΔmrpD strain and vice versa did not improve growth at pH 7.4. This corroborates that the two proteins have unique specific functions. Under the same conditions NuoL could rescue B. subtilis ΔmrpA, but improved the growth of B. subtilis ΔmrpD only slightly. NuoN could restore the wild type properties of B. subtilis ΔmrpD, but had no effect on the ΔmrpA strain. Expression of NuoM did not result in any growth improvement under these conditions. This reveals that the complex I subunits NuoL, NuoM and NuoN also demonstrate functional specializations. The simplest explanation that accounts for all previous and current observations is that the five homologous proteins are single ion transporters. Presumably, MrpA transports Na+ whereas MrpD transports H+ in opposite directions, resulting in antiporter activity. This hypothesis has implications for the complex I functional mechanism, suggesting that one Na+ channel, NuoL, and two H+ channels, NuoM and NuoN, are present.
Collapse
Affiliation(s)
- Vamsi K Moparthi
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
21
|
Batista AP, Pereira MM. Sodium influence on energy transduction by complexes I from Escherichia coli and Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:286-92. [PMID: 21172303 DOI: 10.1016/j.bbabio.2010.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/30/2010] [Accepted: 12/11/2010] [Indexed: 11/25/2022]
Abstract
The nature of the ions that are translocated by Escherichia coli and Paracoccus denitrificans complexes I was investigated. We observed that E. coli complex I was capable of proton translocation in the same direction to the established deltapsi, showing that in the tested conditions, the coupling ion is the H(+). Furthermore, Na(+) transport to the opposite direction was also observed, and, although Na(+) was not necessary for the catalytic or proton transport activities, its presence increased the latter. We also observed H(+) translocation by P. denitrificans complex I, but in this case, H(+) transport was not influenced by Na(+) and also Na(+) transport was not observed. We concluded that E. coli complex I has two energy coupling sites (one Na(+) independent and the other Na(+) dependent), as previously observed for Rhodothermus marinus complex I, whereas the coupling mechanism of P. denitrificans enzyme is completely Na(+) independent. This work thus shows that complex I energy transduction by proton pumping and Na(+)/H(+) antiporting is not exclusive of the R. marinus enzyme. Nevertheless, the Na(+)/H(+) antiport activity seems not to be a general property of complex I, which may be correlated with the metabolic characteristics of the organisms.
Collapse
Affiliation(s)
- Ana P Batista
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. de Republica EAN, 2780-157 Oeiras, Portugal
| | | |
Collapse
|