1
|
Gureev AP, Andrianova NV, Pevzner IB, Zorova LD, Chernyshova EV, Sadovnikova IS, Chistyakov DV, Popkov VA, Semenovich DS, Babenko VA, Silachev DN, Zorov DB, Plotnikov EY, Popov VN. Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats. FEBS J 2022; 289:5697-5713. [DOI: 10.1111/febs.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
- Laboratory of Metagenomics and Food Biotechnology Voronezh State University of Engineering Technology Voronezh Russia
| | - Nadezda V. Andrianova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Irina B. Pevzner
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Ljubava D. Zorova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | | | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
| | - Dmitry V. Chistyakov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Vasily A. Popkov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Dmitry S. Semenovich
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Valentina A. Babenko
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Denis N. Silachev
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Dmitry B. Zorov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
- Laboratory of Metagenomics and Food Biotechnology Voronezh State University of Engineering Technology Voronezh Russia
| |
Collapse
|
2
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|
3
|
Pabis K. Triplex and other DNA motifs show motif-specific associations with mitochondrial DNA deletions and species lifespan. Mech Ageing Dev 2021; 194:111429. [PMID: 33422563 DOI: 10.1016/j.mad.2021.111429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 11/20/2022]
Abstract
The "theory of resistant biomolecules" posits that long-lived species show resistance to molecular damage at the level of their biomolecules. Here, we test this hypothesis in the context of mitochondrial DNA (mtDNA) as it implies that predicted mutagenic DNA motifs should be inversely correlated with species maximum lifespan (MLS). First, we confirmed that guanine-quadruplex and direct repeat (DR) motifs are mutagenic, as they associate with mtDNA deletions in the human major arc of mtDNA, while also adding mirror repeat (MR) and intramolecular triplex motifs to a growing list of potentially mutagenic features. What is more, triplex motifs showed disease-specific associations with deletions and an apparent interaction with guanine-quadruplex motifs. Surprisingly, even though DR, MR and guanine-quadruplex motifs were associated with mtDNA deletions, their correlation with MLS was explained by the biased base composition of mtDNA. Only triplex motifs negatively correlated with MLS even after adjusting for body mass, phylogeny, mtDNA base composition and effective number of codons. Taken together, our work highlights the importance of base composition for the comparative biogerontology of mtDNA and suggests that future research on mitochondrial triplex motifs is warranted.
Collapse
Affiliation(s)
- Kamil Pabis
- Georg August University of Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Ma H, Lee Y, Hayama T, Van Dyken C, Marti-Gutierrez N, Li Y, Ahmed R, Koski A, Kang E, Darby H, Gonmanee T, Park Y, Wolf DP, Jai Kim C, Mitalipov S. Germline and somatic mtDNA mutations in mouse aging. PLoS One 2018; 13:e0201304. [PMID: 30040856 PMCID: PMC6057648 DOI: 10.1371/journal.pone.0201304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
The accumulation of acquired mitochondrial genome (mtDNA) mutations with aging in somatic cells has been implicated in mitochondrial dysfunction and linked to age-onset diseases in humans. Here, we asked if somatic mtDNA mutations are also associated with aging in the mouse. MtDNA integrity in multiple organs and tissues in young and old (2-34 months) wild type (wt) mice was investigated by whole genome sequencing. Remarkably, no acquired somatic mutations were detected in tested tissues. However, we identified several non-synonymous germline mtDNA variants whose heteroplasmy levels (ratio of normal to mutant mtDNA) increased significantly with aging suggesting clonal expansion of inherited mtDNA mutations. Polg mutator mice, a model for premature aging, exhibited both germline and somatic mtDNA mutations whose numbers and heteroplasmy levels increased significantly with age implicating involvement in premature aging. Our results suggest that, in contrast to humans, acquired somatic mtDNA mutations do not accompany the aging process in wt mice.
Collapse
Affiliation(s)
- Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Yeonmi Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Tomonari Hayama
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Riffat Ahmed
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Eunju Kang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Thanasup Gonmanee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Younjung Park
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Don P. Wolf
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chong Jai Kim
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
5
|
Song L, McMackin M, Nguyen A, Cortopassi G. Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism. Neurobiol Dis 2016; 100:30-38. [PMID: 28042097 DOI: 10.1016/j.nbd.2016.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition caused by age-related death of dopaminergic (DA) neurons in the substantia nigra (SN). Mitochondrial DNA (mtDNA) deletions rise exponentially with age in humans and reach their highest levels approaching 60% in dopaminergic neurons of the substantia nigra and overlap with dying neurons. Parkin deletion causes Parkinsonism in humans, presumably through a decrease in mitochondrial quality control, but Parkin knockout mice do not have DA neurodegeneration. We crossed Parkin knockouts to the Twinkle-TG mouse in which mtDNA deletions are increased specifically in substantia nigra to determine the effect of increased deletion mutagenesis in the absence of mitochondrial quality control. These double-mutant 'TwinkPark' mice had 1, the highest mtDNA deletion concentration in SN; 2, the lowest mitochondrial function and membrane potential; 3, the most severe neurobehavioral deficits at 19months; 4, the least dopaminergic neurons in the SN and lowest dopamine levels, i.e. Parkinsonism. This mouse model could provide novel insights into the pathomechanism by which a specific increase in mtDNA deletions with age contribute to dopaminergic neurodegeneration and Parkinson's disease.
Collapse
Affiliation(s)
- Lanying Song
- Vet Med: Molecular Biosciences, University of California, Davis, Davis, CA 95616, United States
| | - Marissa McMackin
- Vet Med: Molecular Biosciences, University of California, Davis, Davis, CA 95616, United States
| | - Andy Nguyen
- Vet Med: Molecular Biosciences, University of California, Davis, Davis, CA 95616, United States
| | - Gino Cortopassi
- Vet Med: Molecular Biosciences, University of California, Davis, Davis, CA 95616, United States.
| |
Collapse
|
6
|
Kõks S, Dogan S, Tuna BG, González-Navarro H, Potter P, Vandenbroucke RE. Mouse models of ageing and their relevance to disease. Mech Ageing Dev 2016; 160:41-53. [PMID: 27717883 DOI: 10.1016/j.mad.2016.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction.
Collapse
Affiliation(s)
- Sulev Kõks
- University of Tartu, Tartu, Estonia and Estonian University of Life Sciences, Tartu, Estonia.
| | - Soner Dogan
- Yeditepe University, School of Medicine, Department of Medical Biology, Istanbul, Turkey.
| | - Bilge Guvenc Tuna
- Yeditepe University, School of Medicine, Department of Biophysics, Istanbul, Turkey.
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain.
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, UK.
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions. Sci Rep 2016; 6:25186. [PMID: 27122135 PMCID: PMC4848546 DOI: 10.1038/srep25186] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 04/12/2016] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.
Collapse
|
8
|
Abstract
Human mitochondria harbor an essential, high copy number, 16,569 base pair, circular DNA genome that encodes 13 gene products required for electron transport and oxidative phosphorylation. Mutation of this genome can compromise cellular respiration, ultimately resulting in a variety of progressive metabolic diseases collectively known as 'mitochondrial diseases'. Mutagenesis of mtDNA and the persistence of mtDNA mutations in cells and tissues is a complex topic, involving the interplay of DNA replication, DNA damage and repair, purifying selection, organelle dynamics, mitophagy, and aging. We briefly review these general elements that affect maintenance of mtDNA, and we focus on nuclear genes encoding the mtDNA replication machinery that can perturb the genetic integrity of the mitochondrial genome.
Collapse
Affiliation(s)
- William C Copeland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA.
| | - Matthew J Longley
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
9
|
Taylor SD, Ericson NG, Burton JN, Prolla TA, Silber JR, Shendure J, Bielas JH. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain. Aging Cell 2014; 13:29-38. [PMID: 23911137 PMCID: PMC4068027 DOI: 10.1111/acel.12146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2013] [Indexed: 12/24/2022] Open
Abstract
Due largely to the inability to accurately quantify and characterize de novo deletion events, the mechanisms underpinning the pathogenic expansion of mtDNA deletions in aging and neuromuscular disorders remain poorly understood. Here, we outline and validate a new tool termed 'Digital Deletion Detection' (3D) that allows for high-resolution analysis of rare deletions occurring at frequencies as low as 1 × 10(-8) . 3D is a three-step process that includes targeted enrichment for deletion-bearing molecules, single-molecule partitioning of genomes into thousands of droplets for direct quantification via droplet digital PCR, and breakpoint characterization using massively parallel sequencing. Using 3D, we interrogated over 8 billion mitochondrial genomes to analyze the age-related dynamics of mtDNA deletions in human brain tissue. We demonstrate that the total deletion load increases with age, while the total number and diversity of unique deletions remain constant. Our data provide support for the hypothesis that expansion of pre-existing mutations is the primary factor contributing to age-related accumulation of mtDNA deletions.
Collapse
Affiliation(s)
- Sean D. Taylor
- Translational Research Program; Public Health Sciences Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
| | - Nolan G. Ericson
- Translational Research Program; Public Health Sciences Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
| | - Joshua N. Burton
- Department of Genome Sciences; University of Washington; 3720 15th Ave NE Seattle WA 98195 USA
| | - Tomas A. Prolla
- Department of Medical Genetics; University of Wisconsin-Madison; 425-G Henry Mall Madison WI 53706 USA
| | - John R. Silber
- Neurological Surgery; University of Washington Medical Center; 1959 NE Pacific St Seattle WA 98195 USA
| | - Jay Shendure
- Department of Genome Sciences; University of Washington; 3720 15th Ave NE Seattle WA 98195 USA
| | - Jason H. Bielas
- Translational Research Program; Public Health Sciences Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
- Human Biology Division; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave Seattle WA 98109 USA
- Department of Pathology; University of Washington Medical Center; 1959 NE Pacific St Seattle WA 98195 USA
| |
Collapse
|
10
|
Khrapko K, Turnbull D. Mitochondrial DNA mutations in aging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:29-62. [PMID: 25149213 DOI: 10.1016/b978-0-12-394625-6.00002-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The relationship of mitochondrial DNA mutations to aging is still debated. Most mtDNA mutations are recessive: there are multiple copies per cell and mutation needs to clonally expand to cause respiratory deficiency. Overall mtDNA mutant loads are low, so effects of mutations are limited to critical areas where mutations locally reach high fractions. This includes respiratory chain deficient zones in muscle fibers, respiratory-deficient crypts in colon, and massive expansions of deleted mtDNA in substantia nigra neurons. mtDNA "mutator" mouse with increased rate of mtDNA mutations is a useful model, although rates and distribution of mutations may significantly deviate from what is observed in human aging. Comparison of species with different longevity reveals intriguing longevity-related traits in mtDNA sequence, although their significance is yet to be evaluated. The impact of somatic mtDNA mutations rapidly increases with age, so their importance is expected to grow as human life expectancy increases.
Collapse
Affiliation(s)
- Konstantin Khrapko
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Doug Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
11
|
Scialo F, Mallikarjun V, Stefanatos R, Sanz A. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 2013; 19:1953-69. [PMID: 22938137 DOI: 10.1089/ars.2012.4900] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Aging is a consequence of the accumulation of cellular damage that impairs the capacity of an aging organism to adapt to stress. The Mitochondrial Free Radical Theory of Aging (MFRTA) has been one of the most influential ideas over the past 50 years. The MFRTA is supported by the accumulation of oxidative damage during aging along with comparative studies demonstrating that long-lived species or individuals produce fewer mitochondrial reactive oxygen species and have lower levels of oxidative damage. RECENT ADVANCES Recently, however, species that combine high oxidative damage with a longer lifespan (i.e., naked mole rats) have been described. Moreover, most of the interventions based on antioxidant supplementation do not increase longevity, as would be predicted by the MFRTA. Studies to date provide a clear understanding that mitochondrial function regulates the rate of aging, but the underlying mechanisms remain unclear. CRITICAL ISSUES Here, we review the reactive oxygen species (ROS)-dependent and ROS-independent mechanisms by which mitochondria can affect longevity. We discuss the role of different ROS (superoxide, hydrogen peroxide, and hydroxyl radical), both as oxidants as well as signaling molecules. We also describe how mitochondria can regulate longevity by ROS-independent mechanisms. We discuss alterations in mitochondrial DNA, accumulation of cellular waste as a consequence of glyco- and lipoxidative damage, and the regulation of DNA maintenance enzymes as mechanisms that can determine longevity without involving ROS. FUTURE DIRECTIONS We also show how the regulation of longevity is a complex process whereby ROS-dependent and ROS-independent mechanisms interact to determine the maximum lifespan of species and individuals.
Collapse
Affiliation(s)
- Filippo Scialo
- 1 Institute of Biomedical Technology and Tampere University Hospital , University of Tampere, Tampere, Finland
| | | | | | | |
Collapse
|
12
|
Neuhaus JFG, Baris OR, Hess S, Moser N, Schröder H, Chinta SJ, Andersen JK, Kloppenburg P, Wiesner RJ. Catecholamine metabolism drives generation of mitochondrial DNA deletions in dopaminergic neurons. ACTA ACUST UNITED AC 2013; 137:354-65. [PMID: 24163249 DOI: 10.1093/brain/awt291] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accumulation of mitochondrial DNA deletions is observed especially in dopaminergic neurons of the substantia nigra during ageing and even more in Parkinson's disease. The resulting mitochondrial dysfunction is suspected to play an important role in neurodegeneration. However, the molecular mechanisms involved in the preferential generation of mitochondrial DNA deletions in dopaminergic neurons are still unknown. To study this phenomenon, we developed novel polymerase chain reaction strategies to detect distinct mitochondrial DNA deletions and monitor their accumulation patterns. Applying these approaches in in vitro and in vivo models, we show that catecholamine metabolism drives the generation and accumulation of these mitochondrial DNA mutations. As in humans, age-related accumulation of mitochondrial DNA deletions is most prominent in dopaminergic areas of mouse brain and even higher in the catecholaminergic adrenal medulla. Dopamine treatment of terminally differentiated neuroblastoma cells, as well as stimulation of dopamine turnover in mice over-expressing monoamine oxidase B both induce multiple mitochondrial DNA deletions. Our results thus identify catecholamine metabolism as the driving force behind mitochondrial DNA deletions, probably being an important factor in the ageing-associated degeneration of dopaminergic neurons.
Collapse
Affiliation(s)
- Johannes F G Neuhaus
- 1 Centre for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kazachkova N, Ramos A, Santos C, Lima M. Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Aging Dis 2013; 4:337-50. [PMID: 24307967 DOI: 10.14336/ad.2013.0400337] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/07/2023] Open
Abstract
A significant body of work, accumulated over the years, strongly suggests that damage in mitochondrial DNA (mtDNA) contributes to aging in humans. Contradictory results, however, are reported in the literature, with some studies failing to provide support to this hypothesis. With the purpose of further understanding the aging process, several models, among which mouse models, have been frequently used. Although important affinities are recognized between humans and mice, differences on what concerns physiological properties, disease pathogenesis as well as life-history exist between the two; the extent to which such differences limit the translation, from mice to humans, of insights on the association between mtDNA damage and aging remains to be established. In this paper we revise the studies that analyze the association between patterns of mtDNA damage and aging, investigating putative alterations in mtDNA copy number as well as accumulation of deletions and of point mutations. Reports from the literature do not allow the establishment of a clear association between mtDNA copy number and age, either in humans or in mice. Further analysis, using a wide spectrum of tissues and a high number of individuals would be necessary to elucidate this pattern. Likewise humans, mice demonstrated a clear pattern of age-dependent and tissue-specific accumulation of mtDNA deletions. Deletions increase with age, and the highest amount of deletions has been observed in brain tissues both in humans and mice. On the other hand, mtDNA point mutations accumulation has been clearly associated with age in humans, but not in mice. Although further studies, using the same methodologies and targeting a larger number of samples would be mandatory to draw definitive conclusions, the revision of the available data raises concerns on the ability of mouse models to mimic the mtDNA damage patterns of humans, a fact with implications not only for the study of the aging process, but also for investigations of other processes in which mtDNA dysfunction is a hallmark, such as neurodegeneration.
Collapse
Affiliation(s)
- Nadiya Kazachkova
- Centre of Research in Natural Resources (CIRN), Department of Biology, University of the Azores, Ponta Delgada, Portugal ; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
14
|
Kowald A, Kirkwood TBL. Mitochondrial mutations and aging: random drift is insufficient to explain the accumulation of mitochondrial deletion mutants in short-lived animals. Aging Cell 2013; 12:728-31. [PMID: 23742009 DOI: 10.1111/acel.12098] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2013] [Indexed: 10/26/2022] Open
Abstract
Mitochondrial DNA deletions accumulate over the life course in post-mitotic cells of many species and may contribute to aging. Often a single mutant expands clonally and finally replaces the wild-type population of a whole cell. One proposal to explain the driving force behind this accumulation states that random drift alone, without any selection advantage, is sufficient to explain the clonal accumulation of a single mutant. Existing mathematical models show that such a process might indeed work for humans. However, to be a general explanation for the clonal accumulation of mtDNA mutants, it is important to know whether random drift could also explain the accumulation process in short-lived species like rodents. To clarify this issue, we modelled this process mathematically and performed extensive computer simulations to study how different mutation rates affect accumulation time and the resulting degree of heteroplasmy. We show that random drift works for lifespans of around 100 years, but for short-lived animals, the resulting degree of heteroplasmy is incompatible with experimental observations.
Collapse
Affiliation(s)
- Axel Kowald
- Centre for Integrated Systems Biology of Ageing and Nutrition Institute for Ageing and Health Newcastle University Newcastle upon Tyne NE4 5PLUK
| | - Thomas B. L. Kirkwood
- Centre for Integrated Systems Biology of Ageing and Nutrition Institute for Ageing and Health Newcastle University Newcastle upon Tyne NE4 5PLUK
| |
Collapse
|
15
|
Stumpf JD, Saneto RP, Copeland WC. Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol 2013; 5:a011395. [PMID: 23545419 DOI: 10.1101/cshperspect.a011395] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inability to replicate mitochondrial genomes (mtDNA) by the mitochondrial DNA polymerase (pol γ) leads to a subset of mitochondrial diseases. Many mutations in POLG, the gene that encodes pol γ, have been associated with mitochondrial diseases such as myocerebrohepatopathy spectrum (MCHS) disorders, Alpers-Huttenlocher syndrome, myoclonic epilepsy myopathy sensory ataxia (MEMSA), ataxia neuropathy spectrum (ANS), and progressive external ophthalmoplegia (PEO). This chapter explores five important topics in POLG-related disease: (1) clinical symptoms that identify and distinguish POLG-related diseases, (2) molecular characterization of defects in polymerase activity by POLG disease variants, (3) the importance of holoenzyme formation in disease presentation, (4) the role of pol γ exonuclease activity and mutagenesis in disease and aging, and (5) novel approaches to therapy and avoidance of toxicity based on primary research in pol γ replication.
Collapse
Affiliation(s)
- Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
16
|
Greaves LC, Barron MJ, Campbell-Shiel G, Kirkwood TBL, Turnbull DM. Differences in the accumulation of mitochondrial defects with age in mice and humans. Mech Ageing Dev 2011; 132:588-91. [PMID: 22015485 DOI: 10.1016/j.mad.2011.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/22/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022]
Abstract
Mitochondrial DNA mutations and associated defects in cytochrome c oxidase (COX) are proposed to play an important role in human ageing; however there have been limited studies on the frequency of these defects in normal mouse ageing. Here we compare COX-deficiency in two epithelial tissues; the colon and the ciliary epithelium, from human and mouse. The pattern of accumulation of COX-deficiency is similar in both tissues in the two species; however the frequency of colonic crypts with COX-deficiency in aged humans is significantly higher than in aged mice, whereas the levels of COX-deficiency in the ciliary epithelium are higher in the mouse than in humans. This suggests the impact of mitochondrial defects on normal ageing may differ significantly between species.
Collapse
Affiliation(s)
- Laura C Greaves
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | |
Collapse
|
17
|
Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations. Cell Mol Life Sci 2010; 68:219-33. [PMID: 20927567 DOI: 10.1007/s00018-010-0530-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
DNA polymerase γ (pol γ), encoded by POLG, is responsible for replicating human mitochondrial DNA. About 150 mutations in the human POLG have been identified in patients with mitochondrial diseases such as Alpers syndrome, progressive external ophthalmoplegia, and ataxia-neuropathy syndromes. Because many of the mutations are described in single citations with no genotypic family history, it is important to ascertain which mutations cause or contribute to mitochondrial disease. The vast majority of data about POLG mutations has been generated from biochemical characterizations of recombinant pol γ. However, recently, the study of mitochondrial dysfunction in Saccharomyces cerevisiae and mouse models provides important in vivo evidence for the role of POLG mutations in disease. Also, the published 3D-structure of the human pol γ assists in explaining some of the biochemical and genetic properties of the mutants. This review summarizes the current evidence that identifies and explains disease-causing POLG mutations.
Collapse
|