1
|
Hagras MA. Respiratory Complex III: A Bioengine with a Ligand-Triggered Electron-Tunneling Gating Mechanism. J Phys Chem B 2024; 128:990-1000. [PMID: 38241470 DOI: 10.1021/acs.jpcb.3c07095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Respiratory complex III (a.k.a., the bc1 complex) plays a key role in the electron transport chain in aerobic cells. The bc1 complex exhibits multiple unique electron tunneling (ET) processes, such as ET-bifurcation at the Qo site and movement of the Rieske domain. Moreover, we previously discovered that electron tunneling in the low potential arm of the bc1 complex is regulated by a key phenylalanine residue (Phe90). The main goal of the current work is to study the dynamics of the key Phe90 residue in the electron tunneling reaction between heme bL and heme bH as a function of the occupancy of the Qo and Qi binding sites in the bc1 complex. We simulated the molecular dynamics of four model systems of respiratory complex III with different ligands bound at the Qo and Qi binding sites. In addition, we calculated the electron tunneling rate constants between heme bL and heme bH along the simulated molecular dynamics trajectories. The binding of aromatic ligands at the Qo site induces a conformational cascade that properly positions the Phe90 residue, reducing the through-space ET distance from ∼7 to ∼5.5 Å and thus enhancing the electron transfer rate between the heme bL and the heme bH redox pair. Also, the binding of aromatic ligands at the Qi site induces conformational changes that stabilize the Phe90 conformational variation from ∼1.5 to ∼0.5 Å. Hence, our molecular dynamics simulation results show an on-demand two-step conformational connection between the occupancy of the Qo and Qi binding sites and the conformational dynamics of the Phe90 residue. Additionally, our dynamic electron tunneling results confirm our previously reported findings that the Phe90 residue acts as an electron-tunneling gate or switch, controlling the electron transfer rate between the heme bL and heme bH redox systems.
Collapse
Affiliation(s)
- Muhammad A Hagras
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
| |
Collapse
|
2
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
3
|
In Silico Modeling of the Mitochondrial Pumping Complexes with Markov State Models. Methods Mol Biol 2021. [PMID: 34060059 DOI: 10.1007/978-1-0716-1266-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The mechanism of proton pumping by the mitochondrial electron transport chain complexes is still enigmatic after decades of research. Recently, there has been interest in in silico Markov state models to model the mitochondrial pumping complexes at the microscopic level, and this chapter describes the methods of constructing and simulating such models.
Collapse
|
4
|
Yuly JL, Zhang P, Ru X, Terai K, Singh N, Beratan DN. Efficient and reversible electron bifurcation with either normal or inverted potentials at the bifurcating cofactor. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Crofts AR. The modified Q-cycle: A look back at its development and forward to a functional model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148417. [PMID: 33745972 DOI: 10.1016/j.bbabio.2021.148417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
On looking back at a lifetime of research, it is interesting to see, in the light of current progress, how things came to be, and to speculate on how things might be. I am delighted in the context of the Mitchell prize to have that excuse to present this necessarily personal view of developments in areas of my interests. I have focused on the Q-cycle and a few examples showing wider ramifications, since that had been the main interest of the lab in the 20 years since structures became available, - a watershed event in determining our molecular perspective. I have reviewed the evidence for our model for the mechanism of the first electron transfer of the bifurcated reaction at the Qo-site, which I think is compelling. In reviewing progress in understanding the second electron transfer, I have revisited some controversies to justify important conclusions which appear, from the literature, not to have been taken seriously. I hope this does not come over as nitpicking. The conclusions are important to the final section in which I develop an internally consistent mechanism for turnovers of the complex leading to a state similar to that observed in recent rapid-mix/freeze-quench experiments, reported three years ago. The final model is necessarily speculative but is open to test.
Collapse
Affiliation(s)
- Antony R Crofts
- Department of Biochemistry, 417 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, IL 61801, United States of America
| |
Collapse
|
6
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
7
|
Wise CE, Ledinina AE, Yuly JL, Artz JH, Lubner CE. The role of thermodynamic features on the functional activity of electron bifurcating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148377. [PMID: 33453185 DOI: 10.1016/j.bbabio.2021.148377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Electron bifurcation is a biological mechanism to drive a thermodynamically unfavorable redox reaction through direct coupling with an exergonic reaction. This process allows microorganisms to generate high energy reducing equivalents in order to sustain life and is often found in anaerobic metabolism, where the energy economy of the cell is poor. Recent work has revealed details of the redox energy landscapes for a variety of electron bifurcating enzymes, greatly expanding the understanding of how energy is transformed by this unique mechanism. Here we highlight the plasticity of these emerging landscapes, what is known regarding their mechanistic underpinnings, and provide a context for interpreting their biochemical activity within the physiological framework. We conclude with an outlook for propelling the field toward an integrative understanding of the impact of electron bifurcation.
Collapse
Affiliation(s)
| | | | | | - Jacob H Artz
- National Renewable Energy Laboratory, Golden, CO, USA
| | | |
Collapse
|
8
|
Springett R. The proton pumping mechanism of the bc 1 complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148352. [PMID: 33338489 DOI: 10.1016/j.bbabio.2020.148352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The bc1 complex is a proton pump of the mitochondrial electron transport chain which transfers electrons from ubiquinol to cytochrome c. It operates via the modified Q cycle in which the two electrons from oxidation of ubiquinol at the Qo center are bifurcated such that the first electron is passed to Cytc via an iron sulfur center and c1 whereas the second electron is passed across the membrane by bL and bH to reduce ubiquinone at the Qi center. Proton pumping occurs because oxidation of ubiquinol at the Qo center releases protons to the P-side and reduction of ubiquinone at the Qi center takes up protons from the N-side. However, the mechanisms which prevent the thermodynamically more favorable short circuit reactions and so ensure precise bifurcation and proton pumping are not known. Here we use statistical thermodynamics to show that reaction steps that originate from high energy states cannot support high flux even when they have large rate constants. We show how the chemistry of ubiquinol oxidation and the structure of the Qo site can result in free energy profiles that naturally suppress flux through the short circuit pathways while allowing high rates of bifurcation. These predictions are confirmed through in-silico simulations using a Markov state model.
Collapse
Affiliation(s)
- Roger Springett
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom.
| |
Collapse
|
9
|
Universal free-energy landscape produces efficient and reversible electron bifurcation. Proc Natl Acad Sci U S A 2020; 117:21045-21051. [PMID: 32801212 DOI: 10.1073/pnas.2010815117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For decades, it was unknown how electron-bifurcating systems in nature prevented energy-wasting short-circuiting reactions that have large driving forces, so synthetic electron-bifurcating molecular machines could not be designed and built. The underpinning free-energy landscapes for electron bifurcation were also enigmatic. We predict that a simple and universal free-energy landscape enables electron bifurcation, and we show that it enables high-efficiency bifurcation with limited short-circuiting (the EB scheme). The landscape relies on steep free-energy slopes in the two redox branches to insulate against short-circuiting using an electron occupancy blockade effect, without relying on nuanced changes in the microscopic rate constants for the short-circuiting reactions. The EB scheme thus unifies a body of observations on biological catalysis and energy conversion, and the scheme provides a blueprint to guide future campaigns to establish synthetic electron bifurcation machines.
Collapse
|
10
|
Mazat JP, Devin A, Ransac S. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci 2020; 77:455-465. [PMID: 31748915 PMCID: PMC11104992 DOI: 10.1007/s00018-019-03381-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
ROS (superoxide and oxygen peroxide in this paper) play a dual role as signalling molecules and strong oxidizing agents leading to oxidative stress. Their production mainly occurs in mitochondria although they may have other locations (such as NADPH oxidase in particular cell types). Mitochondrial ROS production depends in an interweaving way upon many factors such as the membrane potential, the cell type and the respiratory substrates. Moreover, it is experimentally difficult to quantitatively assess the contribution of each potential site in the respiratory chain. To overcome these difficulties, mathematical models have been developed with different degrees of complexity in order to analyse different physiological questions ranging from a simple reproduction/simulation of experimental results to a detailed model of the possible mechanisms leading to ROS production. Here, we analyse experimental results concerning ROS production including results still under discussion. We then critically review the three models of ROS production in the whole respiratory chain available in the literature and propose some direction for future modelling work.
Collapse
Affiliation(s)
- Jean-Pierre Mazat
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France.
- Université de Bordeaux, 146 Rue Léo-Saignat, 33076, Bordeaux Cedex, France.
| | - Anne Devin
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France
| | - Stéphane Ransac
- UMR 5095, IBGC CNRS, 1 Rue Camille Saint-Saëns 33077, Bordeaux Cedex, France
- Université de Bordeaux, 146 Rue Léo-Saignat, 33076, Bordeaux Cedex, France
| |
Collapse
|
11
|
Tacchino F, Succurro A, Ebenhöh O, Gerace D. Optimal efficiency of the Q-cycle mechanism around physiological temperatures from an open quantum systems approach. Sci Rep 2019; 9:16657. [PMID: 31723177 PMCID: PMC6853958 DOI: 10.1038/s41598-019-52842-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/14/2019] [Indexed: 01/17/2023] Open
Abstract
The Q-cycle mechanism entering the electron and proton transport chain in oxygenic photosynthesis is an example of how biological processes can be efficiently investigated with elementary microscopic models. Here we address the problem of energy transport across the cellular membrane from an open quantum system theoretical perspective. We model the cytochrome \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${b}_{6}\,f$$\end{document}b6f protein complex under cyclic electron flow conditions starting from a simplified kinetic model, which is hereby revisited in terms of a Markovian quantum master equation formulation and spin-boson Hamiltonian treatment. We apply this model to theoretically demonstrate an optimal thermodynamic efficiency of the Q-cycle around ambient and physiologically relevant temperature conditions. Furthermore, we determine the quantum yield of this complex biochemical process after setting the electrochemical potentials to values well established in the literature. The present work suggests that the theory of quantum open systems can successfully push forward our theoretical understanding of complex biological systems working close to the quantum/classical boundary.
Collapse
Affiliation(s)
| | - Antonella Succurro
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University, 40225, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany.,Life and Medical Sciences (LIMES) Institute and West German Genome Center, University of Bonn, Bonn, Germany
| | - Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, Heinrich Heine University, 40225, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Dario Gerace
- Department of Physics, University of Pavia, I-27100, Pavia, Italy.
| |
Collapse
|
12
|
Acioglu C, Tuzuner MB, Serhatli M, Acilan C, Sahin B, Akgun E, Adiguzel Z, Gurel B, Baykal AT. A Proteomic Analysis of Mitochondrial Complex III Inhibition in SH-SY5Y Human Neuroblastoma Cell Line. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164615666180713110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background and Objective: Antimycin A (AntA) is a potent Electron Transport System (ETS) inhibitor exerting its effect through inhibiting the transfer of the electrons by binding to the quinone reduction site of the cytochrome bc1 complex (Complex III), which is known to be impaired in Huntington’s Disease (HD). The current studies were undertaken to investigate the effect of complex III inhibition in the SH-SY5Y cell line to delineate the molecular and cellular processes, which may play a role in the pathogenesis of HD.
Methods:
We treated SH-SY5Y neuroblastoma cells with AntA in order to establish an in vitro mitochondrial dysfunction model for HD. Differential proteome analysis was performed by the nLCMS/ MS system. Protein expression was assessed by western blot analysis.
Results:
Thirty five differentially expressed proteins as compared to the vehicle-treated controls were detected. Functional pathway analysis indicated that proteins involved in ubiquitin-proteasomal pathway were up-regulated in AntA-treated SH-SY5Y neuroblastoma cells and the ubiquitinated protein accumulation was confirmed by immunoblotting. We found that Prothymosin α (ProT α) was downregulated. Furthermore, we demonstrated that nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression was co-regulated with ProT α expression, hence knockdown of ProT α in SH-SY5Y cells decreased Nrf2 protein level.
Conclusion:
Our findings suggest that complex III impairment might downregulate ubiquitinproteasome function and NRF2/Keap1 antioxidant response. In addition, it is likely that downregulation of Nrf2 is due to the decreased expression of ProT α in AntA-treated SH-SY5Y cells. Our results could advance the understanding of mechanisms involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Cigdem Acioglu
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Mete Bora Tuzuner
- Research and Development Center, Acibadem Labmed Medical Laboratories, Istanbul, Turkey
| | - Muge Serhatli
- TUBITAK, Marmara Research Center, Genetic Engineering and Biotechnology Institute, 41470, Gebze, Kocaeli, Turkey
| | - Ceyda Acilan
- School of Medicine, Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Betul Sahin
- Research and Development Center, Acibadem Labmed Medical Laboratories, Istanbul, Turkey
| | - Emel Akgun
- Research and Development Center, Acibadem Labmed Medical Laboratories, Istanbul, Turkey
| | - Zelal Adiguzel
- TUBITAK, Marmara Research Center, Genetic Engineering and Biotechnology Institute, 41470, Gebze, Kocaeli, Turkey
| | - Busra Gurel
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
13
|
Measuring the functionality of the mitochondrial pumping complexes with multi-wavelength spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:89-101. [DOI: 10.1016/j.bbabio.2018.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/04/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
|
14
|
Hagras MA, Stuchebrukhov AA. Internal switches modulating electron tunneling currents in respiratory complex III. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:749-58. [DOI: 10.1016/j.bbabio.2016.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
15
|
Hagras MA, Hayashi T, Stuchebrukhov AA. Quantum Calculations of Electron Tunneling in Respiratory Complex III. J Phys Chem B 2015; 119:14637-51. [DOI: 10.1021/acs.jpcb.5b09424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Muhammad A. Hagras
- Department of Chemistry, University of California, One Shields
Avenue, Davis, California 95616, United States
| | - Tomoyuki Hayashi
- Department of Chemistry, University of California, One Shields
Avenue, Davis, California 95616, United States
| | - Alexei A. Stuchebrukhov
- Department of Chemistry, University of California, One Shields
Avenue, Davis, California 95616, United States
| |
Collapse
|
16
|
Markevich NI, Hoek JB. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:656-79. [PMID: 25868872 PMCID: PMC4426091 DOI: 10.1016/j.bbabio.2015.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 12/13/2022]
Abstract
A computational mechanistic model of superoxide (O2•-) formation in the mitochondrial electron transport chain (ETC) was developed to facilitate the quantitative analysis of factors controlling mitochondrial O2•- production and assist in the interpretation of experimental studies. The model takes into account all individual electron transfer reactions in Complexes I and III. The model accounts for multiple, often seemingly contradictory observations on the effects of ΔΨ and ΔpH, and for the effects of multiple substrate and inhibitor conditions, including differential effects of Complex III inhibitors antimycin A, myxothiazol and stigmatellin. Simulation results confirm that, in addition to O2•- formation in Complex III and at the flavin site of Complex I, the quinone binding site of Complex I is an additional superoxide generating site that accounts for experimental observations on O2•- production during reverse electron transfer. However, our simulation results predict that, when cytochrome c oxidase is inhibited during oxidation of succinate, ROS production at this site is eliminated and almost all superoxide in Complex I is generated by reduced FMN, even when the redox pressure for reverse electron transfer from succinate is strong. In addition, the model indicates that conflicting literature data on the kinetics of electron transfer in Complex III involving the iron-sulfur protein-cytochrome bL complex can be resolved in favor of a dissociation of the protein only after electron transfer to cytochrome bH. The model predictions can be helpful in understanding factors driving mitochondrial superoxide formation in intact cells and tissues.
Collapse
Affiliation(s)
- Nikolai I Markevich
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 14290, Russia.
| | - Jan B Hoek
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
17
|
Guillaud F, Dröse S, Kowald A, Brandt U, Klipp E. Superoxide production by cytochrome bc1 complex: A mathematical model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1643-52. [DOI: 10.1016/j.bbabio.2014.05.358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 12/17/2022]
|
18
|
Crofts AR, Hong S, Wilson C, Burton R, Victoria D, Harrison C, Schulten K. The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1362-77. [PMID: 23396004 PMCID: PMC3995752 DOI: 10.1016/j.bbabio.2013.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/12/2012] [Accepted: 01/18/2013] [Indexed: 01/04/2023]
Abstract
1. Recent results suggest that the major flux is carried by a monomeric function, not by an intermonomer electron flow. 2. The bifurcated reaction at the Qo-site involves sequential partial processes, - a rate limiting first electron transfer generating a semiquinone (SQ) intermediate, and a rapid second electron transfer in which the SQ is oxidized by the low potential chain. 3. The rate constant for the first step in a strongly endergonic, proton-first-then-electron mechanism, is given by a Marcus-Brønsted treatment in which a rapid electron transfer is convoluted with a weak occupancy of the proton configuration needed for electron transfer. 4. A rapid second electron transfer pulls the overall reaction over. Mutation of Glu-295 of cyt b shows it to be a key player. 5. In more crippled mutants, electron transfer is severely inhibited and the bell-shaped pH dependence of wildtype is replaced by a dependence on a single pK at ~8.5 favoring electron transfer. Loss of a pK ~6.5 is explained by a change in the rate limiting step from the first to the second electron transfer; the pK ~8.5 may reflect dissociation of QH. 6. A rate constant (<10(3)s(-1)) for oxidation of SQ in the distal domain by heme bL has been determined, which precludes mechanisms for normal flux in which SQ is constrained there. 7. Glu-295 catalyzes proton exit through H(+) transfer from QH, and rotational displacement to deliver the H(+) to exit channel(s). This opens a volume into which Q(-) can move closer to the heme to speed electron transfer. 8. A kinetic model accounts well for the observations, but leaves open the question of gating mechanisms. For the first step we suggest a molecular "escapement"; for the second a molecular ballet choreographed through coulombic interactions. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Antony R Crofts
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Clavijo-Cornejo D, Enriquez-Cortina C, López-Reyes A, Domínguez-Pérez M, Nuño N, Domínguez-Meraz M, Bucio L, Souza V, Factor VM, Thorgeirsson SS, Gutiérrez-Ruiz MC, Gómez-Quiroz LE. Biphasic regulation of the NADPH oxidase by HGF/c-Met signaling pathway in primary mouse hepatocytes. Biochimie 2013; 95:1177-84. [PMID: 23333744 DOI: 10.1016/j.biochi.2013.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/08/2013] [Indexed: 12/22/2022]
Abstract
Redox signaling is emerging as an essential mechanism in the regulation of biological activities of the cell. The HGF/c-Met signaling pathway has been implicated as a key regulator of the cellular redox homeostasis and oxidative stress. We previously demonstrated that genetic deletion of c-Met in hepatocytes disrupts redox homeostasis by a mechanism involving NADPH oxidase. Here, we were focused to address the mechanism of NADPH oxidase regulation by HGF/c-Met signaling in primary mouse hepatocytes and its relevance. HGF induced a biphasic mechanism of NADPH oxidase regulation. The first phase employed the rapid increase in production of ROS as signaling effectors to activate the Nrf2-mediated protective response resulting in up-regulation of the antioxidant proteins, such as NAD(P)H quinone oxidoreductase and γ-glutamylcysteine synthetase. The second phase operated under a prolonged HGF exposure, caused a suppression of the NADPH oxidase components, including NOX2, NOX4, p22 and p67, and was able to abrogate the TGFβ-induced ROS production and improve cell viability. In conclusion, HGF/c-Met induces a Nrf2-mediated protective response by a double mechanism driven by NADPH oxidase.
Collapse
Affiliation(s)
- Denise Clavijo-Cornejo
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina S-351, 09340 Iztapalapa, México, D.F., Mexico; PhD program on Experimental Biology, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bleier L, Dröse S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1320-31. [PMID: 23269318 DOI: 10.1016/j.bbabio.2012.12.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/05/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023]
Abstract
Apart from complex I (NADH:ubiquinone oxidoreductase) the mitochondrial cytochrome bc1 complex (complex III; ubiquinol:cytochrome c oxidoreductase) has been identified as the main producer of superoxide and derived reactive oxygen species (ROS) within the mitochondrial respiratory chain. Mitochondrial ROS are generally linked to oxidative stress, aging and other pathophysiological settings like in neurodegenerative diseases. However, ROS produced at the ubiquinol oxidation center (center P, Qo site) of complex III seem to have additional physiological functions as signaling molecules during cellular processes like the adaptation to hypoxia. The molecular mechanism of superoxide production that is mechanistically linked to the electron bifurcation during ubiquinol oxidation is still a matter of debate. Some insight comes from extensive kinetic studies with mutated complexes from yeast and bacterial cytochrome bc1 complexes. This review is intended to bridge the gap between those mechanistic studies and investigations on complex III ROS in cellular signal transduction and highlights factors that impact superoxide generation. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Lea Bleier
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
21
|
Victoria D, Burton R, Crofts AR. Role of the -PEWY-glutamate in catalysis at the Q(o)-site of the Cyt bc(1) complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:365-86. [PMID: 23123515 DOI: 10.1016/j.bbabio.2012.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/09/2023]
Abstract
We re-examine the pH dependence of partial processes of ubihydroquinone (QH(2)) turnover in Glu-295 mutants in Rhodobacter sphaeroides to clarify the mechanistic role. In more crippled mutants, the bell-shaped pH profile of wildtype was replaced by dependence on a single pK at ~8.5 favoring electron transfer. Loss of the pK at 6.5 reflects a change in the rate-limiting step from the first to the second electron transfer. Over the range of pH 6-8, no major pH dependence of formation of the initial reaction complex was seen, and the rates of bypass reactions were similar to the wildtype. Occupancy of the Q(o)-site by semiquinone (SQ) was similar in the wildtype and the Glu→Trp mutant. Since heme b(L) is initially oxidized in the latter, the bifurcated reaction can still occur, allowing estimation of an empirical rate constant <10(3)s(-1) for reduction of heme b(L) by SQ from the domain distal from heme b(L), a value 1000-fold smaller than that expected from distance. If the pK ~8.5 in mutant strains is due to deprotonation of the neutral semiquinone, with Q(•-) as electron donor to heme b(L), then in wildtype this low value would preclude mechanisms for normal flux in which semiquinone is constrained to this domain. A kinetic model in which Glu-295 catalyzes H(+) transfer from QH•, and delivery of the H(+) to exit channel(s) by rotational displacement, and facilitates rapid electron transfer from SQ to heme b(L) by allowing Q(•-) to move closer to the heme, accounts well for the observations.
Collapse
Affiliation(s)
- Doreen Victoria
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
22
|
Kim N, Ripple MO, Springett R. Measurement of the mitochondrial membrane potential and pH gradient from the redox poise of the hemes of the bc1 complex. Biophys J 2012; 102:1194-203. [PMID: 22404942 DOI: 10.1016/j.bpj.2012.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/22/2012] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
The redox potentials of the hemes of the mitochondrial bc(1) complex are dependent on the proton-motive force due to the energy transduction. This allows the membrane potential and pH gradient components to be calculated from the oxidation state of the hemes measured with multi-wavelength cell spectroscopy. Oxidation states were measured in living RAW 264.7 cells under varying electron flux and membrane potential obtained by a combination of oligomycin and titration with a proton ionophore. A stochastic model of bc(1) turnover was used to confirm that the membrane potential and redox potential of the ubiquinone pool could be measured from the redox poise of the b-hemes under physiological conditions assuming the redox couples are in equilibrium. The pH gradient was then calculated from the difference in redox potentials of cytochrome c and ubiquinone pool using the stochastic model to evaluate the ΔG of the bc(1) complex. The technique allows absolute quantification of the membrane potential, pH gradient, and proton-motive force without the need for genetic manipulation or exogenous compounds.
Collapse
Affiliation(s)
- N Kim
- Department of Radiology, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | | |
Collapse
|
23
|
Abstract
Central in respiration or photosynthesis, the cytochrome bc1 and b6f complexes are regarded as functionally similar quinol oxidoreductases. They both catalyse a redox loop, the Q-cycle, which couples electron and proton transfer. This loop involves a bifurcated electron transfer step considered as being mechanistically mandatory, making the Q-cycle indispensable for growth. Attempts to falsify this paradigm in the case of cytochrome bc1 have failed. The rapid proteolytic degradation of b6f complexes bearing mutations aimed at hindering the Q-cycle has precluded so far the experimental assessment of this model in the photosynthetic chain. Here we combine mutations in Chlamydomonas that inactivate the redox loop but preserve high accumulation levels of b6f complexes. The oxidoreductase activity of these crippled complexes is sufficient to sustain photosynthetic growth, which demonstrates that the Q-cycle is dispensable for oxygenic photosynthesis. The Q-cycle is thought to be an essential energetic component of the photosynthetic electron-transfer chain. Here, Chlamydomonas mutants with an inactive Q-cycle but normal levels of b6f complexes are shown to display photosynthetic growth, demonstrating the dispensability of the Q-cycle in the oxygenic photosynthetic chain.
Collapse
|
24
|
Mazat JP, Ransac S. [The cytochrome bc1 complex in the mitochondrial respiratory chain functions according to the Q cycle hypothesis of Mitchell: the proof using a stochastic approach?]. Med Sci (Paris) 2011; 26:1079-86. [PMID: 21187048 DOI: 10.1051/medsci/201026121079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bc1 complex is a central complex in the mitochondrial respiratory chain. It links the electrons transfer from ubiquinol (or coenzyme Q) to cytochrome c and proton translocation across the inner mitochondrial membrane. It is widely agreed that the "Q-cycle mechanism" proposed by Mitchell correctly describes the bc1 complex working. It is based on an unexpected separation of the two electrons coming from the coenzyme Q bound at the Q0 site of the bc1 complex. Using the stochastic approach of Gillespie and the known spatial structure of bc1 complexes with the kinetic parameters described by Moser and Dutton we demonstrated the natural emergence of the Q-cycle mechanism and the quasi absence of short-circuits in the functional dimer of bc1 complex without the necessity to invoke any additional mechanism. This approach gives a framework which is well adapted to the modelling of all oxido-reduction reactions of the respiratory chain complexes, normal or mutant.
Collapse
Affiliation(s)
- Jean-Pierre Mazat
- Inserm U688, Université de Bordeaux 2, 146, rue Léo-Saignat, F 33076, Bordeaux Cedex, France.
| | | |
Collapse
|
25
|
Virtual mitochondrion: towards an integrated model of oxidative phosphorylation complexes and beyond. Biochem Soc Trans 2011; 38:1215-9. [PMID: 20863287 DOI: 10.1042/bst0381215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The modelling of OXPHOS (oxidative phosphorylation) in order to integrate all kinetic and thermodynamic aspects of chemiosmotic theory has a long history. We briefly review this history and show how new ways of modelling are required to integrate a local model of the individual respiratory complexes into a global model of OXPHOS and, beyond that, into a reliable overall model of central metabolism.
Collapse
|