1
|
La Greca M, Chen JL, Schubert L, Kozuch J, Berneiser T, Terpitz U, Heberle J, Schlesinger R. The Photoreaction of the Proton-Pumping Rhodopsin 1 From the Maize Pathogenic Basidiomycete Ustilago maydis. Front Mol Biosci 2022; 9:826990. [PMID: 35281268 PMCID: PMC8913941 DOI: 10.3389/fmolb.2022.826990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins have recently been discovered in pathogenic fungi and have been postulated to be involved in signaling during the course of an infection. Here, we report on the spectroscopic characterization of a light-driven proton pump rhodopsin (UmRh1) from the smut pathogen Ustilago maydis, the causative agent of tumors in maize plants. Electrophysiology, time-resolved UV/Vis and vibrational spectroscopy indicate a pH-dependent photocycle. We also characterized the impact of the auxin hormone indole-3-acetic acid that was shown to influence the pump activity of UmRh1 on individual photocycle intermediates. A facile pumping activity test was established of UmRh1 expressed in Pichia pastoris cells, for probing proton pumping out of the living yeast cells during illumination. We show similarities and distinct differences to the well-known bacteriorhodopsin from archaea and discuss the putative role of UmRh1 in pathogenesis.
Collapse
Affiliation(s)
- Mariafrancesca La Greca
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jacek Kozuch
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Tim Berneiser
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Joachim Heberle
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger,
| |
Collapse
|
2
|
Panzer S, Zhang C, Konte T, Bräuer C, Diemar A, Yogendran P, Yu-Strzelczyk J, Nagel G, Gao S, Terpitz U. Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates. Front Mol Biosci 2021; 8:750528. [PMID: 34790700 PMCID: PMC8591190 DOI: 10.3389/fmolb.2021.750528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications.
Collapse
Affiliation(s)
- Sabine Panzer
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Chong Zhang
- Department of Neurophysiology, Physiological Institute, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Tilen Konte
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Celine Bräuer
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Anne Diemar
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Parathy Yogendran
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Jing Yu-Strzelczyk
- Department of Neurophysiology, Physiological Institute, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Georg Nagel
- Department of Neurophysiology, Physiological Institute, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Julius Maximilian University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
3
|
Abstract
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan;
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| |
Collapse
|
4
|
Kikuchi M, Kojima K, Nakao S, Yoshizawa S, Kawanishi S, Shibukawa A, Kikukawa T, Sudo Y. Functional expression of the eukaryotic proton pump rhodopsin OmR2 in Escherichia coli and its photochemical characterization. Sci Rep 2021; 11:14765. [PMID: 34285294 PMCID: PMC8292405 DOI: 10.1038/s41598-021-94181-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Microbial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.
Collapse
Affiliation(s)
- Masuzu Kikuchi
- Division of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Kojima
- Division of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Shin Nakao
- Division of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Shiho Kawanishi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, GI-CoRE, Hokkaido University, Sapporo, 001-0021, Japan
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan. .,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
5
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
6
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
7
|
Panzer S, Brych A, Batschauer A, Terpitz U. Opsin 1 and Opsin 2 of the Corn Smut Fungus Ustilago maydis Are Green Light-Driven Proton Pumps. Front Microbiol 2019; 10:735. [PMID: 31024506 PMCID: PMC6467936 DOI: 10.3389/fmicb.2019.00735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/25/2019] [Indexed: 01/19/2023] Open
Abstract
In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis.
Collapse
Affiliation(s)
- Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Annika Brych
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| |
Collapse
|
8
|
Adam A, Deimel S, Pardo-Medina J, García-Martínez J, Konte T, Limón MC, Avalos J, Terpitz U. Protein Activity of the Fusarium fujikuroi Rhodopsins CarO and OpsA and Their Relation to Fungus-Plant Interaction. Int J Mol Sci 2018; 19:ijms19010215. [PMID: 29324661 PMCID: PMC5796164 DOI: 10.3390/ijms19010215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023] Open
Abstract
Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.
Collapse
Affiliation(s)
- Alexander Adam
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, D-97074 Würzburg, Germany; (A.A.); (S.D.)
| | - Stephan Deimel
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, D-97074 Würzburg, Germany; (A.A.); (S.D.)
| | - Javier Pardo-Medina
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Jorge García-Martínez
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Tilen Konte
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Sl-1000 Ljubljana, Slovenia;
| | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain; (J.P.-M.); (J.G.-M.); (M.C.L.); (J.A.)
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, D-97074 Würzburg, Germany; (A.A.); (S.D.)
- Correspondence: ; Tel.: +49-931-31-84226
| |
Collapse
|
9
|
Wang Z, Wang J, Li N, Li J, Trail F, Dunlap JC, Townsend JP. Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol Ecol 2017; 27:216-232. [PMID: 29134709 DOI: 10.1111/mec.14425] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023]
Abstract
Understanding the genetic basis of the switch from asexual to sexual lifestyles in response to sometimes rapid environmental changes is one of the major challenges in fungal ecology. Light appears to play a critical role in the asexual-sexual switch-but fungal genomes harbour diverse light sensors. Fungal opsins are homologous to bacterial green-light-sensory rhodopsins, and their organismal functions in fungi have not been well understood. Three of these opsin-like proteins were widely distributed across fungal genomes, but homologs of the Fusarium opsin-like protein CarO were present only in plant-associated fungi. Key amino acids, including potential retinal binding sites, functionally diverged on the phylogeny of opsins. This diversification of opsin-like proteins could be correlated with life history-associated differences among fungi in their expression and function during morphological development. In Neurospora crassa and related species, knockout of the opsin NOP-1 led to a phenotype in the regulation of the asexual-sexual switch, modulating response to both light and oxygen conditions. Sexual development commenced early in ∆nop-1 strains cultured in unsealed plates under constant blue and white light. Furthermore, comparative transcriptomics showed that the expression of nop-1 is light-dependent and that the ∆nop-1 strain abundantly expresses genes involved in oxidative stress response, genes enriched in NAD/NADP binding sites, genes with functions in proton transmembrane movement and catalase activity, and genes involved in the homeostasis of protons. Based on these observations, we contend that light and oxidative stress regulate the switch via light-responsive and ROS pathways in model fungus N. crassa and other fungi.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Junrui Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Department of Plant Pathology, Michigan State University, East Lansing, MI, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Program in Microbiology, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
|
11
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
12
|
García-Martínez J, Brunk M, Avalos J, Terpitz U. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep 2015; 5:7798. [PMID: 25589426 PMCID: PMC4295100 DOI: 10.1038/srep07798] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/18/2014] [Indexed: 12/29/2022] Open
Abstract
Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO(-) mutant and carO(+) control strains showed a faster development of light-exposed carO(-) germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Michael Brunk
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, D-97074 Würzburg, Germany
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
13
|
Isotope Labeling of Eukaryotic Membrane Proteins in Yeast for Solid-State NMR. Methods Enzymol 2015; 565:193-212. [DOI: 10.1016/bs.mie.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
14
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 804] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
15
|
Balashov SP, Petrovskaya LE, Imasheva ES, Lukashev EP, Dioumaev AK, Wang JM, Sychev SV, Dolgikh DA, Rubin AB, Kirpichnikov MP, Lanyi JK. Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum. J Biol Chem 2013; 288:21254-21265. [PMID: 23696649 DOI: 10.1074/jbc.m113.465138] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ε-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein.
Collapse
Affiliation(s)
- Sergei P Balashov
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697,.
| | - Lada E Petrovskaya
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and.
| | - Eleonora S Imasheva
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Evgeniy P Lukashev
- the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrei K Dioumaev
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Jennifer M Wang
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Sergey V Sychev
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and
| | - Dmitriy A Dolgikh
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and; the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrei B Rubin
- the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and; the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Janos K Lanyi
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697,.
| |
Collapse
|
16
|
Gostinčar C, Muggia L, Grube M. Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses. Front Microbiol 2012; 3:390. [PMID: 23162543 PMCID: PMC3492852 DOI: 10.3389/fmicb.2012.00390] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/22/2012] [Indexed: 11/13/2022] Open
Abstract
Black meristematic fungi can survive high doses of radiation and are resistant to desiccation. These adaptations help them to colonize harsh oligotrophic habitats, e.g., on the surface and subsurface of rocks. One of their most characteristic stress-resistance mechanisms is the accumulation of melanin in the cell walls. This, production of other protective molecules and a plastic morphology further contribute to ecological flexibility of black fungi. Increased growth rates of some species after exposure to ionizing radiation even suggest yet unknown mechanisms of energy production. Other unusual metabolic strategies may include harvesting UV or visible light or gaining energy by forming facultative lichen-like associations with algae or cyanobacteria. The latter is not entirely surprising, since certain black fungal lineages are phylogenetically related to clades of lichen-forming fungi. Similar to black fungi, lichen-forming fungi are adapted to growth on exposed surfaces with low availability of nutrients. They also efficiently use protective molecules to tolerate frequent periods of extreme stress. Traits shared by both groups of fungi may have been important in facilitating the evolution and radiation of lichen-symbioses.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of ProteinsLjubljana, Slovenia
| | - Lucia Muggia
- Institute of Plant Sciences, Karl-Franzens-University GrazGraz, Austria
- Department of Life Science, University of TriesteTrieste, Italy
| | - Martin Grube
- Institute of Plant Sciences, Karl-Franzens-University GrazGraz, Austria
| |
Collapse
|
17
|
Ito H, Sumii M, Kawanabe A, Fan Y, Furutani Y, Brown LS, Kandori H. Comparative FTIR study of a new fungal rhodopsin. J Phys Chem B 2012; 116:11881-9. [PMID: 22973982 DOI: 10.1021/jp306993a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriorhodopsin (BR) is a light-driven proton pump of halophilic Archaea , and BR-like proton-pumping rhodopsins have been discovered in Bacteria and Eucarya as well. Leptosphaeria rhodopsin (LR) and Phaeosphaeria Rhodopsin 2 (PhaeoRD2) are both fungal rhodopsins in such a functional class, even though they belong to different branches of the phylogenetic tree. In this study, we compared light-induced structural changes in the K, L, and M photointermediates for PhaeoRD2, LR, and BR using low-temperature Fourier transform infrared (FTIR) spectroscopy. We observed a strongly hydrogen-bonded water molecule in PhaeoRD2 (water O-D stretch in D(2)O at 2258 cm(-1)) as well as in LR and BR. This observation provided additional experimental evidence to the concept that strongly hydrogen-bonded water molecule is the functional determinant of light-driven proton pumping. The difference FTIR spectra for all the K, L, and M states are surprisingly similar between PhaeoRD2 and LR, but not for BR. PhaeoRD2 is more homologous to LR than to BR, but the difference is small. The amino acid identities between PhaeoRD2 and LR, and between PhaeoRD2 and BR are 34.5% and 30.2%, respectively. In addition, the amino acids uniquely identical for the fungal rhodopsins are located rather far from the retinal chromophore. In fact, the amino acid identities within 4 Å from retinal are the same among PhaeoRD2, LR, and BR. For more than 100 amino acids located within 12 Å from retinal, the identities are 48.7% between PhaeoRD2 and LR, 46.0% between PhaeoRD2 and BR, and 47.8% between LR and BR. These results suggest that protein core structures are equally different among the three rhodopsins. Thus, the identical FTIR spectra between PhaeoRD2 and LR (but not BR), even for the K state, indicate that fungal rhodopsins possess some common structural motif and dynamics not obvious from the amino acid sequences.
Collapse
Affiliation(s)
- Hiroyasu Ito
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | | | | | | | | | | | | |
Collapse
|