1
|
Giang PD, Niks D, Hakopian S, Hille R, Bernhardt PV. Reversible enzyme-catalysed NAD +/NADH electrochemistry. Chem Sci 2025; 16:6035-6049. [PMID: 40070472 PMCID: PMC11891784 DOI: 10.1039/d5sc00570a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Formate dehydrogenase (FdsDABG) from Cupriavidus necator is a Mo-containing enzyme capable of catalysing both formate oxidation to CO2 and the reverse CO2 reduction to formate by utilising NAD+ or NADH, respectively. This enzyme is part of the NADH dehydrogenase superfamily. Its subcomplex, FdsBG, lacking the formate oxidizing/CO2-reducing Mo-cofactor, but harbouring an FMN as well as [2Fe-2S] and [4Fe-4S] clusters, reversibly interconverts the NAD+/NADH redox pair. UV-vis spectroelectrochemistry across the range 6 < pH < 8 determined the redox potentials of these three cofactors. Cyclic voltammetry was used to explore mechanistic and kinetic properties of each oxidation- and reduction-half reaction. Through mediated enzyme electrochemistry experiments, the Michaelis constant for NADH oxidation (K M,NADH = 1.7 × 102 μM) was determined using methylene blue as a redox mediator. For the reverse NAD+ reduction reaction using methyl viologen as electron donor a similar analysis yielded the value of K M,NAD+ = 1.2 mM. All experimental voltammetry data were reproduced by electrochemical simulations furnishing a set of self-consistent rate constants for the catalytic FdsBG system for both NAD+ reduction and NADH oxidation. This comprises the first electrochemical kinetic analysis of its kind for a reversible NADH dehydrogenase enzyme and provides new insight to the function of the FdsDABG formate dehydrogenase holoenzyme.
Collapse
Affiliation(s)
- Peter D Giang
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Australia
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside USA
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside USA
| | - Russ Hille
- Department of Biochemistry, University of California Riverside USA
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane 4072 Australia
| |
Collapse
|
2
|
William VU, Magpantay HD. Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation. Microorganisms 2023; 12:74. [PMID: 38257901 PMCID: PMC10820871 DOI: 10.3390/microorganisms12010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Throughout history, cases of arsenic poisoning have been reported worldwide, and the highly toxic effects of arsenic to humans, plants, and animals are well documented. Continued anthropogenic activities related to arsenic contamination in soil and water, as well as its persistency and lethality, have allowed arsenic to remain a pollutant of high interest and concern. Constant scrutiny has eventually resulted in new and better techniques to mitigate it. Among these, microbial remediation has emerged as one of the most important due to its reliability, safety, and sustainability. Over the years, numerous microorganisms have been successfully shown to remove arsenic from various environmental matrices. This review provides an overview of the interactions between microorganisms and arsenic, the different mechanisms utilized by microorganisms to detoxify arsenic, as well as current trends in the field of microbial-based bioremediation of arsenic. While the potential of microbial bioremediation of arsenic is notable, further studies focusing on the field-scale applicability of this technology is warranted.
Collapse
Affiliation(s)
| | - Hilbert D. Magpantay
- Department of Chemistry, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines;
| |
Collapse
|
3
|
Kalimuthu P, Hakopian S, Niks D, Hille R, Bernhardt PV. The Reversible Electrochemical Interconversion of Formate and CO 2 by Formate Dehydrogenase from Cupriavidus necator. J Phys Chem B 2023; 127:8382-8392. [PMID: 37728992 DOI: 10.1021/acs.jpcb.3c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from Cupriavidus necator is a soluble NAD+-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO- (formate) to CO2 and reversibly reduces CO2 to HCOO- under physiological conditions close to its thermodynamic redox potential. Here we develop an electrocatalytically active formate oxidation/CO2 reduction system by immobilizing FdsDABG on a glassy carbon electrode in the presence of coadsorbents such as chitosan and glutaraldehyde. The reversible enzymatic interconversion between HCOO- and CO2 by FdsDABG has been realized with cyclic voltammetry using a range of artificial electron transfer mediators, with methylene blue (MB) and phenazine methosulfate (PMS) being particularly effective as electron acceptors for FdsDABG in formate oxidation. Methyl viologen (MV) acts as both an electron acceptor (MV2+) in formate oxidation and an electron donor (MV+•) for CO2 reduction. The catalytic voltammetry was reproduced by electrochemical simulation across a range of sweep rates and concentrations of formate and mediators to provide new insights into the kinetics of the FdsDABG catalytic mechanism.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
4
|
Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV. Catalytic electrochemistry of the bacterial Molybdoenzyme YcbX. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148579. [PMID: 35640667 DOI: 10.1016/j.bbabio.2022.148579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Molybdenum-dependent enzymes that can reduce N-hydroxylated substrates (e.g. N-hydroxyl-purines, amidoximes) are found in bacteria, plants and vertebrates. They are involved in the conversion of a wide range of N-hydroxylated organic compounds into their corresponding amines, and utilize various redox proteins (cytochrome b5, cyt b5 reductase, flavin reductase) to deliver reducing equivalents to the catalytic centre. Here we present catalytic electrochemistry of the bacterial enzyme YcbX from Escherichia coli utilizing the synthetic electron transfer mediator methyl viologen (MV2+). The electrochemically reduced form (MV+.) acts as an effective electron donor for YcbX. To immobilize YcbX on a glassy carbon electrode, a facile protein crosslinking approach was used with the crosslinker glutaraldehyde (GTA). The YcbX-modified electrode showed a catalytic response for the reduction of a broad range of N-hydroxylated substrates. The catalytic activity of YcbX was examined at different pH values exhibiting an optimum at pH 7.5 and a bell-shaped pH profile with deactivation through deprotonation (pKa1 9.1) or protonation (pKa2 6.1). Electrochemical simulation was employed to obtain new biochemical data for YcbX, in its reaction with methyl viologen and the organic substrates 6-N-hydroxylaminopurine (6-HAP) and benzamidoxime (BA).
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Milena Baldauf
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ahmed H Hassan
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
5
|
Bacterial Arsenic Metabolism and Its Role in Arsenic Bioremediation. Curr Microbiol 2022; 79:131. [PMID: 35290506 DOI: 10.1007/s00284-022-02810-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Arsenic contaminations, often adversely influencing the living organisms, including plants, animals, and the microbial communities, are of grave apprehension. Many physical, chemical, and biological techniques are now being explored to minimize the adverse affects of arsenic toxicity. Bioremediation of arsenic species using arsenic loving bacteria has drawn much attention. Arsenate and arsenite are mostly uptaken by bacteria through aquaglycoporins and phosphate transporters. After entering arsenic inside bacterial cell arsenic get metabolized (e.g., reduction, oxidation, methylation, etc.) into different forms. Arsenite is sequentially methylated into monomethyl arsenic acid (MMA) and dimethyl arsenic acid (DMA), followed by a transformation of less toxic, volatile trimethyl arsenic acid (TMA). Passive remediation techniques, including adsorption, biomineralization, bioaccumulation, bioleaching, and so on are exploited by bacteria. Rhizospheric bacterial association with some specific plants enhances phytoextraction process. Arsenic-resistant rhizospheric bacteria have immense role in enhancement of crop plant growth and development, but their applications are not well studied till date. Emerging techniques like phytosuction separation (PS-S) have a promising future, but still light to be focused on these techniques. Plant-associated bioremediation processes like phytoextraction and phytosuction separation (PS-S) techniques might be modified by treating with potent bacteria for furtherance.
Collapse
|
6
|
Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV. Electrochemically driven catalysis of the bacterial molybdenum enzyme YiiM. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148523. [PMID: 34921810 DOI: 10.1016/j.bbabio.2021.148523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022]
Abstract
The Mo-dependent enzyme YiiM enzyme from Escherichia coli is a member of the sulfite oxidase family and shares many similarities with the well-studied human mitochondrial amidoxime reducing component (mARC). We have investigated YiiM catalysis using electrochemical and spectroscopic methods. EPR monitored redox potentiometry found the active site redox potentials to be MoVI/V -0.02 V and MoV/IV -0.12 V vs NHE at pH 7.2. In the presence of methyl viologen as an electrochemically reduced electron donor, YiiM catalysis was studied with a range of potential substrates. YiiM preferentially reduces N-hydroxylated compounds such as hydroxylamines, amidoximes, N-hydroxypurines and N-hydroxyureas but shows little or no activity against amine-oxides or sulfoxides. The pH optimum for catalysis was 7.1 and a bell-shaped pH profile was found with pKa values of 6.2 and 8.1 either side of this optimum that are associated with protonation/deprotonations that modulate activity. Simulation of the experimental voltammetry elucidated kinetic parameters associated with YiiM catalysis with the substrates 6-hydroxyaminopurine and benzamidoxime.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane, 4072, Australia
| | - Milena Baldauf
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ahmed H Hassan
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
7
|
Struwe MA, Kalimuthu P, Luo Z, Zhong Q, Ellis D, Yang J, Khadanand KC, Harmer JR, Kirk ML, McEwan AG, Clement B, Bernhardt PV, Kobe B, Kappler U. Active site architecture reveals coordination sphere flexibility and specificity determinants in a group of closely related molybdoenzymes. J Biol Chem 2021; 296:100672. [PMID: 33887324 PMCID: PMC8166771 DOI: 10.1016/j.jbc.2021.100672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/27/2022] Open
Abstract
MtsZ is a molybdenum-containing methionine sulfoxide reductase that supports virulence in the human respiratory pathogen Haemophilus influenzae (Hi). HiMtsZ belongs to a group of structurally and spectroscopically uncharacterized S-/N-oxide reductases, all of which are found in bacterial pathogens. Here, we have solved the crystal structure of HiMtsZ, which reveals that the HiMtsZ substrate-binding site encompasses a previously unrecognized part that accommodates the methionine sulfoxide side chain via interaction with His182 and Arg166. Charge and amino acid composition of this side chain–binding region vary and, as indicated by electrochemical, kinetic, and docking studies, could explain the diverse substrate specificity seen in closely related enzymes of this type. The HiMtsZ Mo active site has an underlying structural flexibility, where dissociation of the central Ser187 ligand affected catalysis at low pH. Unexpectedly, the two main HiMtsZ electron paramagnetic resonance (EPR) species resembled not only a related dimethyl sulfoxide reductase but also a structurally unrelated nitrate reductase that possesses an Asp–Mo ligand. This suggests that contrary to current views, the geometry of the Mo center and its primary ligands, rather than the specific amino acid environment, is the main determinant of the EPR properties of mononuclear Mo enzymes. The flexibility in the electronic structure of the Mo centers is also apparent in two of three HiMtsZ EPR-active Mo(V) species being catalytically incompetent off-pathway forms that could not be fully oxidized.
Collapse
Affiliation(s)
- Michel A Struwe
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia; Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Zhenyao Luo
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Qifeng Zhong
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Daniel Ellis
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - K C Khadanand
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld, Australia
| | - Martin L Kirk
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Alastair G McEwan
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Bostjan Kobe
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Ulrike Kappler
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia.
| |
Collapse
|
8
|
Shi K, Wang Q, Wang G. Microbial Oxidation of Arsenite: Regulation, Chemotaxis, Phosphate Metabolism and Energy Generation. Front Microbiol 2020; 11:569282. [PMID: 33072028 PMCID: PMC7533571 DOI: 10.3389/fmicb.2020.569282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Arsenic (As) is a metalloid that occurs widely in the environment. The biological oxidation of arsenite [As(III)] to arsenate [As(V)] is considered a strategy to reduce arsenic toxicity and provide energy. In recent years, research interests in microbial As(III) oxidation have been growing, and related new achievements have been revealed. This review focuses on the highlighting of the novel regulatory mechanisms of bacterial As(III) oxidation, the physiological relevance of different arsenic sensing systems and functional relationship between microbial As(III) oxidation and those of chemotaxis, phosphate uptake, carbon metabolism and energy generation. The implication to environmental bioremediation applications of As(III)-oxidizing strains, the knowledge gaps and perspectives are also discussed.
Collapse
Affiliation(s)
- Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Wang
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
|
10
|
Ahn AC, Cavalca L, Colombo M, Schuurmans JM, Sorokin DY, Muyzer G. Transcriptomic Analysis of Two Thioalkalivibrio Species Under Arsenite Stress Revealed a Potential Candidate Gene for an Alternative Arsenite Oxidation Pathway. Front Microbiol 2019; 10:1514. [PMID: 31333619 PMCID: PMC6620896 DOI: 10.3389/fmicb.2019.01514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/17/2019] [Indexed: 11/30/2022] Open
Abstract
The genus Thioalkalivibrio includes haloalkaliphilic chemolithoautotrophic sulfur-oxidizing bacteria isolated from various soda lakes worldwide. Some of these lakes possess in addition to their extreme haloalkaline environment also other harsh conditions, to which Thioalkalivibrio needs to adapt. An example is arsenic in soda lakes in eastern California, which is found there in concentrations up to 3000 μM. Arsenic is a widespread element that can be an environmental issue, as it is highly toxic to most organisms. However, resistance mechanisms in the form of detoxification are widespread and some prokaryotes can even use arsenic as an energy source. We first screened the genomes of 76 Thioalkalivibrio strains for the presence of known arsenic oxidoreductases and found 15 putative ArxA (arsenite oxidase) and two putative ArrA (arsenate reductase). Subsequently, we studied the resistance to arsenite in detail in Thioalkalivibrio jannaschii ALM2T, and Thioalkalivibrio thiocyanoxidans ARh2T by comparative genomics and by growing them at different arsenite concentrations followed by arsenic species and transcriptomic analysis. Tv. jannaschii ALM2T, which has been isolated from Mono Lake, an arsenic-rich soda lake, could resist up to 5 mM arsenite, whereas Tv. thiocyanoxidans ARh2T, which was isolated from a Kenyan soda lake, could only grow up to 0.1 mM arsenite. Interestingly, both species oxidized arsenite to arsenate under aerobic conditions, although Tv. thiocyanoxidans ARh2T does not contain any known arsenite oxidases, and in Tv. jannaschii ALM2T, only arxB2 was clearly upregulated. However, we found the expression of a SoeABC-like gene, which we assume might have been involved in arsenite oxidation. Other arsenite stress responses for both strains were the upregulation of the vitamin B12 synthesis pathway, which can be linked to antioxidant activity, and the up- and downregulation of different DsrE/F-like genes whose roles are still unclear. Moreover, Tv. jannaschii ALM2T induced the ars gene operon and the Pst system, and Tv. thiocanoxidans ARh2T upregulated the sox and apr genes as well as different heat shock proteins. Our findings for Thioalkalivibrio confirm previously observed adaptations to arsenic, but also provide new insights into the arsenic stress response and the connection between the arsenic and the sulfur cycle.
Collapse
Affiliation(s)
- Anne-Catherine Ahn
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Lucia Cavalca
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Milena Colombo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - J Merijn Schuurmans
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Dimitry Y Sorokin
- Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Anguita JM, Vera MA, Vargas IT. The Electrochemically Active Arsenic Oxidising Bacterium Ancylobacter
sp. TS-1. ChemElectroChem 2018. [DOI: 10.1002/celc.201800943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Javiera M. Anguita
- Departamento de Ingeniería Hidráulica y Ambiental; Pontificia Universidad Católica de Chile; Av. Vicuña Mackenna 4860 Santiago Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS); Los Navegantes 1963 Santiago Chile
| | - Mario A. Vera
- Departamento de Ingeniería Hidráulica y Ambiental; Pontificia Universidad Católica de Chile; Av. Vicuña Mackenna 4860 Santiago Chile
- Instituto de Ingeniería Biológica y Médica Facultades de Ingeniería Medicina y Ciencias Biológicas; Pontificia Universidad Católica de Chile; Av. Vicuña Mackenna 4860 Santiago Chile
| | - Ignacio T. Vargas
- Departamento de Ingeniería Hidráulica y Ambiental; Pontificia Universidad Católica de Chile; Av. Vicuña Mackenna 4860 Santiago Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS); Los Navegantes 1963 Santiago Chile
| |
Collapse
|
12
|
Watson C, Niks D, Hille R, Vieira M, Schoepp-Cothenet B, Marques AT, Romão MJ, Santos-Silva T, Santini JM. Electron transfer through arsenite oxidase: Insights into Rieske interaction with cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:865-872. [PMID: 28801050 PMCID: PMC5574378 DOI: 10.1016/j.bbabio.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/05/2017] [Accepted: 08/05/2017] [Indexed: 11/25/2022]
Abstract
Arsenic is a widely distributed environmental toxin whose presence in drinking water poses a threat to >140 million people worldwide. The respiratory enzyme arsenite oxidase from various bacteria catalyses the oxidation of arsenite to arsenate and is being developed as a biosensor for arsenite. The arsenite oxidase from Rhizobium sp. str. NT-26 (a member of the Alphaproteobacteria) is a heterotetramer consisting of a large catalytic subunit (AioA), which contains a molybdenum centre and a 3Fe-4S cluster, and a small subunit (AioB) containing a Rieske 2Fe-2S cluster. Stopped-flow spectroscopy and isothermal titration calorimetry (ITC) have been used to better understand electron transfer through the redox-active centres of the enzyme, which is essential for biosensor development. Results show that oxidation of arsenite at the active site is extremely fast with a rate of >4000s-1 and reduction of the electron acceptor is rate-limiting. An AioB-F108A mutation results in increased activity with the artificial electron acceptor DCPIP and decreased activity with cytochrome c, which in the latter as demonstrated by ITC is not due to an effect on the protein-protein interaction but instead to an effect on electron transfer. These results provide further support that the AioB F108 is important in electron transfer between the Rieske subunit and cytochrome c and its absence in the arsenite oxidases from the Betaproteobacteria may explain the inability of these enzymes to use this electron acceptor.
Collapse
Affiliation(s)
- Cameron Watson
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, United Kingdom
| | - Dimitri Niks
- Department of Biochemistry, University of California; Riverside, Riverside, CA 92521, USA
| | - Russ Hille
- Department of Biochemistry, University of California; Riverside, Riverside, CA 92521, USA
| | - Marta Vieira
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | | | - Alexandra T Marques
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | - Maria João Romão
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | - Teresa Santos-Silva
- UCIBIO-Requimte, Department of Chemistry, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Portugal
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, United Kingdom.
| |
Collapse
|
13
|
Kalimuthu P, Hsiao J, Nair RP, Kappler U, Bernhardt PV. Bioelectrocatalysis of Sulfite Dehydrogenase from
Sinorhizobium meliloti
with Its Physiological Cytochrome Electron Partner. ChemElectroChem 2017. [DOI: 10.1002/celc.201700838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Ju‐Chun Hsiao
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | | | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| |
Collapse
|
14
|
Template- and Additive-free Electrosynthesis and Characterization of Spherical Gold Nanoparticles on Hydrophobic Conducting Polydimethylsiloxane. Chem Asian J 2017; 12:1615-1624. [DOI: 10.1002/asia.201700444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/26/2017] [Indexed: 01/21/2023]
|
15
|
Kalimuthu P, Belaidi AA, Schwarz G, Bernhardt PV. Mediated Catalytic Voltammetry of Holo and Heme‐Free Human Sulfite Oxidases. ChemElectroChem 2017. [DOI: 10.1002/celc.201600685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| | - Abdel A. Belaidi
- The Florey Institute of Neuroscience and Mental Health University of Melbourne Victoria 3052 Australia
- Institute of Biochemistry Department of Chemistry and Center for Molecular Medicine Cologne University Zülicher Str. 47 50674 Köln Germany
| | - Guenter Schwarz
- Institute of Biochemistry Department of Chemistry and Center for Molecular Medicine Cologne University Zülicher Str. 47 50674 Köln Germany
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Australia
| |
Collapse
|
16
|
An Oxidoreductase AioE is Responsible for Bacterial Arsenite Oxidation and Resistance. Sci Rep 2017; 7:41536. [PMID: 28128323 PMCID: PMC5270249 DOI: 10.1038/srep41536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022] Open
Abstract
Previously, we found that arsenite (AsIII) oxidation could improve the generation of ATP/NADH to support the growth of Agrobacterium tumefaciens GW4. In this study, we found that aioE is induced by AsIII and located in the arsenic island near the AsIII oxidase genes aioBA and co-transcripted with the arsenic resistant genes arsR1-arsC1-arsC2-acr3-1. AioE belongs to TrkA family corresponding the electron transport function with the generation of NADH and H+. An aioE in-frame deletion strain showed a null AsIII oxidation and a reduced AsIII resistance, while a cytC mutant only reduced AsIII oxidation efficiency. With AsIII, aioE was directly related to the increase of NADH, while cytC was essential for ATP generation. In addition, cyclic voltammetry analysis showed that the redox potential (ORP) of AioBA and AioE were +0.297 mV vs. NHE and +0.255 mV vs. NHE, respectively. The ORP gradient is AioBA > AioE > CytC (+0.217 ~ +0.251 mV vs. NHE), which infers that electron may transfer from AioBA to CytC via AioE. The results indicate that AioE may act as a novel AsIII oxidation electron transporter associated with NADH generation. Since AsIII oxidation contributes AsIII detoxification, the essential of AioE for AsIII resistance is also reasonable.
Collapse
|
17
|
Kalimuthu P, Ringel P, Kruse T, Bernhardt PV. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1506-1513. [DOI: 10.1016/j.bbabio.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023]
|
18
|
Kalimuthu P, Heider J, Knack D, Bernhardt PV. Electrocatalytic Hydrocarbon Hydroxylation by Ethylbenzene Dehydrogenase from Aromatoleum aromaticum. J Phys Chem B 2015; 119:3456-63. [DOI: 10.1021/jp512562k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry
and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Johann Heider
- Laboratory for
Microbial Biochemistry and Synmikro Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Daniel Knack
- Laboratory for
Microbial Biochemistry and Synmikro Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Paul V. Bernhardt
- School of Chemistry
and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
19
|
Kappler U, Enemark JH. Sulfite-oxidizing enzymes. J Biol Inorg Chem 2014; 20:253-64. [DOI: 10.1007/s00775-014-1197-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
|
20
|
Kalimuthu P, Kappler U, Bernhardt PV. Catalytic Voltammetry of the Molybdoenzyme Sulfite Dehydrogenase from Sinorhizobium meliloti. J Phys Chem B 2014; 118:7091-9. [DOI: 10.1021/jp503963z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular
Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular
Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular
Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|