1
|
Glass JB, Elbon CE, Williams LD. Something old, something new, something borrowed, something blue: the anaerobic microbial ancestry of aerobic respiration. Trends Microbiol 2023; 31:135-141. [PMID: 36058785 DOI: 10.1016/j.tim.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
Aerobic respiration evolved by bricolage, with modules cobbled together as microbial biochemistry coevolved with Earth's geochemistry. The mitochondrial electron transport chain represents a patchwork of respiratory modules inherited from microbial methanogenesis, iron oxidation, anoxygenic photosynthesis, and denitrification pathways, and preserves a biochemical record of Earth's redox environment over its four-billion-year history. Imprints of the anoxic early Earth are recognizable in Complex I's numerous iron-sulfur cofactors and vestigial binding sites for ferredoxin, nickel-iron, and molybdopterin, whereas the more recent advent of oxygen as a terminal electron acceptor necessitated use of heme and copper cofactors by Complex IV. Bricolage of respiratory complexes resulted in supercomplexes for improved electron transfer efficiency in some bacteria and archaea, and in many eukaryotes. Accessory subunits evolved to wrap mitochondrial supercomplexes for improved assembly and stability. Environmental microbes with 'fossil' proteins that are similar to ancestral forms of the respiratory complexes deserve further scrutiny and may reveal new insights on the evolution of aerobic respiration.
Collapse
Affiliation(s)
- Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Claire E Elbon
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, Zechmeister T, Karst SM, Albertsen M, Nielsen PH, Wagner M, Daims H. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. THE ISME JOURNAL 2020; 14:2967-2979. [PMID: 32709974 PMCID: PMC7784846 DOI: 10.1038/s41396-020-0724-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022]
Abstract
Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3-12.8 g salt/l), highly alkaline (pH 8.9-10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, "Candidatus Nitrospira alkalitolerans", revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. "Ca. Nitrospira alkalitolerans" also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.
Collapse
Affiliation(s)
- Anne Daebeler
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
| | - Katharina Kitzinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Max Planck Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Hanna Koch
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela Steinfeder
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Jasmin Schwarz
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | | | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria.
- University of Vienna, The Comammox Research Platform, Vienna, Austria.
| |
Collapse
|
3
|
The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics. Biochem J 2020; 476:2743-2756. [PMID: 31654059 DOI: 10.1042/bcj20190365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
Abstract
The thylakoid NAD(P)H dehydrogenase-like (NDH) complex is a large protein complex that reduces plastoquinone and pumps protons into the lumen generating protonmotive force. In plants, the complex consists of both nuclear and chloroplast-encoded subunits. Despite its perceived importance for stress tolerance and ATP generation, chloroplast-encoded NDH subunits have been lost numerous times during evolution in species occupying seemingly unrelated environmental niches. We have generated a phylogenetic tree that reveals independent losses in multiple phylogenetic lineages, and we use this tree as a reference to discuss possible evolutionary contexts that may have relaxed selective pressure for retention of ndh genes. While we are still yet unable to pinpoint a singular specific lifestyle that negates the need for NDH, we are able to rule out several long-standing explanations. In light of this, we discuss the biochemical changes that would be required for the chloroplast to dispense with NDH functionality with regards to known and proposed NDH-related reactions.
Collapse
|
4
|
Chadwick GL, Hemp J, Fischer WW, Orphan VJ. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. THE ISME JOURNAL 2018; 12:2668-2680. [PMID: 29991762 PMCID: PMC6194058 DOI: 10.1038/s41396-018-0210-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 01/05/2023]
Abstract
Respiratory complex I is part of a large family of homologous enzymes that carry out the transfer of electrons between soluble cytoplasmic electron carriers and membrane-bound electron carriers. These complexes are vital bioenergetic enzymes that serve as the entry points into electron transport chains for a wide variety of microbial metabolisms, and electron transfer is coupled to proton translocation. The core complex of this enzyme is made up of 11 protein subunits, with three major proton pumping subunits. Here, we document a large number of modified complex I gene cassettes found in genome sequences from diverse cultured bacteria, shotgun metagenomics, and environmentally derived archaeal fosmids all of which encode a fourth proton pumping subunit. The incorporation of this extra subunit into a functional protein complex is supported by large amino acid insertions in the amphipathic helix that runs the length of the protein complex. Phylogenetic analyses reveal that these modified complexes appear to have arisen independently multiple times in a remarkable case of convergent molecular evolution. From an energetic perspective, we hypothesize that this modification on the canonical complex I architecture allows for the translocation of a fifth proton per reaction cycle-the physiological utility of this modified complex is discussed.
Collapse
Affiliation(s)
- Grayson L Chadwick
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA.
| | - James Hemp
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA
| | - Woodward W Fischer
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA
| | - Victoria J Orphan
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA.
| |
Collapse
|
5
|
Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment. Front Microbiol 2018; 9:2038. [PMID: 30233524 PMCID: PMC6129605 DOI: 10.3389/fmicb.2018.02038] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Desulfatiglans-related organisms comprise one of the most abundant deltaproteobacterial lineages in marine sediments where they occur throughout the sediment column in a gradient of increasing sulfate and organic carbon limitation with depth. Characterized Desulfatiglans isolates are dissimilatory sulfate reducers able to grow by degrading aromatic hydrocarbons. The ecophysiology of environmental Desulfatiglans-populations is poorly understood, however, possibly utilization of aromatic compounds may explain their predominance in marine subsurface sediments. We sequenced and analyzed seven Desulfatiglans-related single-cell genomes (SAGs) from Aarhus Bay sediments to characterize their metabolic potential with regard to aromatic compound degradation and energy metabolism. The average genome assembly size was 1.3 Mbp and completeness estimates ranged between 20 and 50%. Five of the SAGs (group 1) originated from the sulfate-rich surface part of the sediment while two (group 2) originated from sulfate-depleted subsurface sediment. Based on 16S rRNA gene amplicon sequencing group 2 SAGs represent the more frequent types of Desulfatiglans-populations in Aarhus Bay sediments. Genes indicative of aromatic compound degradation could be identified in both groups, but the two groups were metabolically distinct with regard to energy conservation. Group 1 SAGs carry a full set of genes for dissimilatory sulfate reduction, whereas the group 2 SAGs lacked any genetic evidence for sulfate reduction. The latter may be due to incompleteness of the SAGs, but as alternative energy metabolisms group 2 SAGs carry the genetic potential for growth by acetogenesis and fermentation. Group 1 SAGs encoded reductive dehalogenase genes, allowing them to access organohalides and possibly conserve energy by their reduction. Both groups possess sulfatases unlike their cultured relatives allowing them to utilize sulfate esters as source of organic carbon and sulfate. In conclusion, the uncultivated marine Desulfatiglans populations are metabolically diverse, likely reflecting different strategies for coping with energy and sulfate limitation in the subsurface seabed.
Collapse
Affiliation(s)
- Lara M Jochum
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Ian P G Marshall
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo B Jørgensen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Ito M, Morino M, Krulwich TA. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea. Front Microbiol 2017; 8:2325. [PMID: 29218041 PMCID: PMC5703873 DOI: 10.3389/fmicb.2017.02325] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/10/2017] [Indexed: 11/13/2022] Open
Abstract
Mrp (Multiple resistance and pH) antiporter was identified as a gene complementing an alkaline-sensitive mutant strain of alkaliphilic Bacillus halodurans C-125 in 1990. At that time, there was no example of a multi-subunit type Na+/H+ antiporter comprising six or seven hydrophobic proteins, and it was newly designated as the monovalent cation: proton antiporter-3 (CPA3) family in the classification of transporters. The Mrp antiporter is broadly distributed among bacteria and archaea, not only in alkaliphiles. Generally, all Mrp subunits, mrpA–G, are required for enzymatic activity. Two exceptions are Mrp from the archaea Methanosarcina acetivorans and the eubacteria Natranaerobius thermophilus, which are reported to sustain Na+/H+ antiport activity with the MrpA subunit alone. Two large subunits of the Mrp antiporter, MrpA and MrpD, are homologous to membrane-embedded subunits of the respiratory chain complex I, NuoL, NuoM, and NuoN, and the small subunit MrpC has homology with NuoK. The functions of the Mrp antiporter include sodium tolerance and pH homeostasis in an alkaline environment, nitrogen fixation in Schizolobium meliloti, bile salt tolerance in Bacillus subtilis and Vibrio cholerae, arsenic oxidation in Agrobacterium tumefaciens, pathogenesis in Pseudomonas aeruginosa and Staphylococcus aureus, and the conversion of energy involved in metabolism and hydrogen production in archaea. In addition, some Mrp antiporters transport K+ and Ca2+ instead of Na+, depending on the environmental conditions. Recently, the molecular structure of the respiratory chain complex I has been elucidated by others, and details of the mechanism by which it transports protons are being clarified. Based on this, several hypotheses concerning the substrate transport mechanism in the Mrp antiporter have been proposed. The MrpA and MrpD subunits, which are homologous to the proton transport subunit of complex I, are involved in the transport of protons and their coupling cations. Herein, we outline other recent findings on the Mrp antiporter.
Collapse
Affiliation(s)
- Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Japan
| | - Masato Morino
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry A Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Functional Role of MrpA in the MrpABCDEFG Na+/H+ Antiporter Complex from the Archaeon Methanosarcina acetivorans. J Bacteriol 2016; 199:JB.00662-16. [PMID: 27799324 DOI: 10.1128/jb.00662-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
The multisubunit cation/proton antiporter 3 family, also called Mrp, is widely distributed in all three phylogenetic domains (Eukarya, Bacteria, and Archaea). Investigations have focused on Mrp complexes from the domain Bacteria to the exclusion of Archaea, with a consensus emerging that all seven subunits are required for Na+/H+ antiport activity. The MrpA subunit from the MrpABCDEFG Na+/H+ antiporter complex of the archaeon Methanosarcina acetivorans was produced in antiporter-deficient Escherichia coli strains EP432 and KNabc and biochemically characterized to determine the role of MrpA in the complex. Both strains containing MrpA grew in the presence of up to 500 mM NaCl and pH values up to 11.0 with no added NaCl. Everted vesicles from the strains containing MrpA were able to generate a NADH-dependent pH gradient (ΔpH), which was abated by the addition of monovalent cations. The apparent Km values for Na+ and Li+ were similar and ranged from 31 to 63 mM, whereas activity was too low to determine the apparent Km for K+ Optimum activity was obtained between pH 7.0 and 8.0. Homology molecular modeling identified two half-closed symmetry-related ion translocation channels that are linked, forming a continuous path from the cytoplasm to the periplasm, analogous to the NuoL subunit of complex I. Bioinformatics analyses revealed genes encoding homologs of MrpABCDEFG in metabolically diverse methane-producing species. Overall, the results advance the biochemical, evolutionary, and physiological understanding of Mrp complexes that extends to the domain Archaea IMPORTANCE: The work is the first reported characterization of an Mrp complex from the domain Archaea, specifically methanogens, for which Mrp is important for acetotrophic growth. The results show that the MrpA subunit is essential for antiport activity and, importantly, that not all seven subunits are required, which challenges current dogma for Mrp complexes from the domain Bacteria A mechanism is proposed in which an MrpAD subcomplex catalyzes Na+/H+ antiport independent of an MrpBCEFG subcomplex, although the activity of the former is modulated by the latter. Properties of MrpA strengthen proposals that the Mrp complex is of ancient origin and that subunits were recruited to evolve the ancestral complex I. Finally, bioinformatics analyses indicate that Mrp complexes function in diverse methanogenic pathways.
Collapse
|
8
|
Morino M, Ogoda S, Krulwich TA, Ito M. Differences in the phenotypic effects of mutations in homologous MrpA and MrpD subunits of the multi-subunit Mrp-type Na +/H + antiporter. Extremophiles 2016; 21:51-64. [PMID: 27709304 DOI: 10.1007/s00792-016-0877-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Mrp antiporters are the sole antiporters in the Cation/Proton Antiporter 3 family of transporter databases because of their unusual structural complexity, 6-7 hydrophobic proteins that function as a hetero-oligomeric complex. The two largest and homologous subunits, MrpA and MrpD, are essential for antiport activity and have direct roles in ion transport. They also show striking homology with proton-conducting, membrane-embedded Nuo subunits of respiratory chain complex I of bacteria, e.g., Escherichia coli. MrpA has the closest homology to the complex I NuoL subunit and MrpD has the closest homology to the complex I NuoM and N subunits. Here, introduction of mutations in MrpD, in residues that are also present in MrpA, led to defects in antiport function and/or complex formation. No significant phenotypes were detected in strains with mutations in corresponding residues of MrpA, but site-directed changes in the C-terminal region of MrpA had profound effects, showing that the MrpA C-terminal region has indispensable roles in antiport function. The results are consistent with a divergence in adaptations that support the roles of MrpA and MrpD in secondary antiport, as compared to later adaptations supporting homologs in primary proton pumping by the respiratory chain complex I.
Collapse
Affiliation(s)
- Masato Morino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,, 573-13 Kamitanui, Tarnaki-cho, Watarai-gun, Mie, 519-0417, Japan
| | - Shinichiro Ogoda
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan
| | - Terry Ann Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Masahiro Ito
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan. .,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Saitama, 350-0815, Japan.
| |
Collapse
|
9
|
Sperling E, Górecki K, Drakenberg T, Hägerhäll C. Functional Differentiation of Antiporter-Like Polypeptides in Complex I; a Site-Directed Mutagenesis Study of Residues Conserved in MrpA and NuoL but Not in MrpD, NuoM, and NuoN. PLoS One 2016; 11:e0158972. [PMID: 27391676 PMCID: PMC4938563 DOI: 10.1371/journal.pone.0158972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 01/29/2023] Open
Abstract
It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN) of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD) from a Na+/H+ antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid residues in helix VIII, which are only conserved in NuoL and MrpA (but not in any of the other antiporter-like subunits.) and to compare their effect on the function of these two proteins. By combining complementation studies in B. subtilis and 23Na-NMR, response of mutants to high sodium levels were tested. All of the mutants were able to cope with high salt levels; however, all but one mutation (M258I/M225I) showed differences in the efficiency of cell growth and sodium efflux. Our findings showed that, although very similar in sequence, NuoL and MrpA seem to differ on the functional level. Nonetheless the studied mutations gave rise to interesting phenotypes which are of interest in complex I research.
Collapse
Affiliation(s)
- Eva Sperling
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
- * E-mail:
| | - Kamil Górecki
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Torbjörn Drakenberg
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Cecilia Hägerhäll
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Narayanan M, Sakyiama JA, Elguindy MM, Nakamaru-Ogiso E. Roles of subunit NuoL in the proton pumping coupling mechanism of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. J Biochem 2016; 160:205-215. [PMID: 27118783 DOI: 10.1093/jb/mvw027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/09/2016] [Indexed: 01/13/2023] Open
Abstract
Respiratory complex I has an L-shaped structure formed by the hydrophilic arm responsible for electron transfer and the membrane arm that contains protons pumping machinery. Here, to gain mechanistic insights into the role of subunit NuoL, we investigated the effects of Mg2+, Zn2+ and the Na+/H+ antiporter inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on proton pumping activities of various isolated NuoL mutant complex I after reconstitution into Escherichia coli double knockout (DKO) membrane vesicles lacking complex I and the NADH dehydrogenase type 2. We found that Mg2+ was critical for proton pumping activity of complex I. At 2 µM Zn2+, proton pumping of the wild-type was selectively inhibited without affecting electron transfer; no inhibition in proton pumping of D178N and D400A was observed, suggesting the involvement of these residues in Zn2+ binding. Fifteen micromolar of EIPA caused up to ∼40% decrease in the proton pumping activity of the wild-type, D303A and D400A/E, whereas no significant change was detected in D178N, indicating its possible involvement in the EIPA binding. Furthermore, when menaquinone-rich DKO membranes were used, the proton pumping efficiency in the wild-type was decreased significantly (∼50%) compared with NuoL mutants strongly suggesting that NuoL is involved in the high efficiency pumping mechanism in complex I.
Collapse
Affiliation(s)
- Madhavan Narayanan
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Joseph A Sakyiama
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Mahmoud M Elguindy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Dibrova DV, Galperin MY, Koonin EV, Mulkidjanian AY. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics. BIOCHEMISTRY (MOSCOW) 2016; 80:495-516. [PMID: 26071768 DOI: 10.1134/s0006297915050016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.
Collapse
Affiliation(s)
- D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | |
Collapse
|
12
|
Gnandt E, Dörner K, Strampraad MFJ, de Vries S, Friedrich T. The multitude of iron-sulfur clusters in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1068-1072. [PMID: 26944855 DOI: 10.1016/j.bbabio.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Respiratory complex I couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. Complex I contains one non-covalently bound flavin mononucleotide and, depending on the species, up to ten iron-sulfur (Fe/S) clusters as cofactors. The reason for the presence of the multitude of Fe/S clusters in complex I remained enigmatic for a long time. The question was partly answered by investigations on the evolution of the complex revealing the stepwise construction of the electron transfer domain from several modules. Extension of the ancestral to the modern electron input domain was associated with the acquisition of several Fe/S-proteins. The X-ray structure of the complex showed that the NADH oxidation-site is connected with the quinone-reduction site by a chain of seven Fe/S-clusters. Fast enzyme kinetics revealed that this chain of Fe/S-clusters is used to regulate electron-tunneling rates within the complex. A possible function of the off-pathway cluster N1a is discussed. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Emmanuel Gnandt
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, Albertstr. 21, 79104 Freiburg i. Br., Germany
| | - Katerina Dörner
- Deutsches Elektronen-Synchrotron DESY, CFEL, Notkestr. 85, Hamburg, Germany
| | - Marc F J Strampraad
- Delft University of Technology, Department of Biotechnology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Simon de Vries
- Delft University of Technology, Department of Biotechnology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, Albertstr. 21, 79104 Freiburg i. Br., Germany.
| |
Collapse
|
13
|
Wirth C, Brandt U, Hunte C, Zickermann V. Structure and function of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:902-14. [PMID: 26921811 DOI: 10.1016/j.bbabio.2016.02.013] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Proton-pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of the respiratory chain. Fourteen central subunits represent the minimal form of complex I and can be assigned to functional modules for NADH oxidation, ubiquinone reduction, and proton pumping. In addition, the mitochondrial enzyme comprises some 30 accessory subunits surrounding the central subunits that are not directly associated with energy conservation. Complex I is known to release deleterious oxygen radicals (ROS) and its dysfunction has been linked to a number of hereditary and degenerative diseases. We here review recent progress in structure determination, and in understanding the role of accessory subunits and functional analysis of mitochondrial complex I. For the central subunits, structures provide insight into the arrangement of functional modules including the substrate binding sites, redox-centers and putative proton channels and pump sites. Only for two of the accessory subunits, detailed structures are available. Nevertheless, many of them could be localized in the overall structure of complex I, but most of these assignments have to be considered tentative. Strikingly, redox reactions and proton pumping machinery are spatially completely separated and the site of reduction for the hydrophobic substrate ubiquinone is found deeply buried in the hydrophilic domain of the complex. The X-ray structure of complex I from Yarrowia lipolytica provides clues supporting the previously proposed two-state stabilization change mechanism, in which ubiquinone redox chemistry induces conformational states and thereby drives proton pumping. The same structural rearrangements may explain the active/deactive transition of complex I implying an integrated mechanistic model for energy conversion and regulation. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Ulrich Brandt
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany.
| |
Collapse
|
14
|
Schut GJ, Zadvornyy O, Wu CH, Peters JW, Boyd ES, Adams MWW. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:958-70. [PMID: 26808919 DOI: 10.1016/j.bbabio.2016.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/26/2015] [Accepted: 01/18/2016] [Indexed: 11/29/2022]
Abstract
Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Gerrit J Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Oleg Zadvornyy
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Chang-Hao Wu
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Michael W W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
15
|
Castro PJ, Silva AF, Marreiros BC, Batista AP, Pereira MM. Respiratory complex I: A dual relation with H(+) and Na(+)? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:928-37. [PMID: 26711319 DOI: 10.1016/j.bbabio.2015.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Respiratory complex I couples NADH:quinone oxidoreduction to ion translocation across the membrane, contributing to the buildup of the transmembrane difference of electrochemical potential. H(+) is well recognized to be the coupling ion of this system but some studies suggested that this role could be also performed by Na(+). We have previously observed NADH-driven Na(+) transport opposite to H(+) translocation by menaquinone-reducing complexes I, which indicated a Na(+)/H(+) antiporter activity in these systems. Such activity was also observed for the ubiquinone-reducing mitochondrial complex I in its deactive form. The relation of Na(+) with complex I may not be surprising since the enzyme has three subunits structurally homologous to bona fide Na(+)/H(+) antiporters and translocation of H(+) and Na(+) ions has been described for members of most types of ion pumps and transporters. Moreover, no clearly distinguishable motifs for the binding of H(+) or Na(+) have been recognized yet. We noticed that in menaquinone-reducing complexes I, less energy is available for ion translocation, compared to ubiquinone-reducing complexes I. Therefore, we hypothesized that menaquinone-reducing complexes I perform Na(+)/H(+) antiporter activity in order to achieve the stoichiometry of 4H(+)/2e(-). In agreement, the organisms that use ubiquinone, a high potential quinone, would have kept such Na(+)/H(+) antiporter activity, only operative under determined conditions. This would imply a physiological role(s) of complex I besides a simple "coupling" of a redox reaction and ion transport, which could account for the sophistication of this enzyme. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Paulo J Castro
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Ana P Batista
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
16
|
Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:214-23. [PMID: 26682761 DOI: 10.1016/j.bbabio.2015.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany.
| | - Doris Kreuzer Dekovic
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany
| | - Sabrina Burschel
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany
| |
Collapse
|
17
|
Caballero S, Duchêne S, Garavito MF, Slikas B, Baker CS. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes. PLoS One 2015; 10:e0123543. [PMID: 25946045 PMCID: PMC4422622 DOI: 10.1371/journal.pone.0123543] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 03/04/2015] [Indexed: 01/31/2023] Open
Abstract
A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the ‘river dolphins’, early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three ‘river dolphins’ (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of cetaceans.
Collapse
Affiliation(s)
- Susana Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia
- * E-mail:
| | - Sebastian Duchêne
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia
- School of Biological Sciences, The University of Sydney, NSW, Australia
| | - Manuel F. Garavito
- Grupo de Investigaciones en Bioquímica y Biología Molecular de Parásitos, Biological Sciences Department, Universidad de los Andes, Bogota, Colombia
| | - Beth Slikas
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, Oregon, United States of America
| | - C. Scott Baker
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, Oregon, United States of America
| |
Collapse
|
18
|
Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus methanoplasma termitum”. Appl Environ Microbiol 2015; 81:1338-52. [PMID: 25501486 PMCID: PMC4309702 DOI: 10.1128/aem.03389-14] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/08/2014] [Indexed: 11/20/2022] Open
Abstract
The recently discovered seventh order of methanogens, the Methanomassiliicoccales (previously referred to as “Methanoplasmatales”), so far consists exclusively of obligately hydrogen-dependent methylotrophs. We sequenced the complete genome of “Candidatus Methanoplasma termitum” from a highly enriched culture obtained from the intestinal tract of termites and compared it with the previously published genomes of three other strains from the human gut, including the first isolate of the order. Like all other strains, “Ca. Methanoplasma termitum” lacks the entire pathway for CO2 reduction to methyl coenzyme Mand produces methane by hydrogen-dependent reduction of methanol or methylamines, which is consistent with additional physiological data. However, the shared absence of cytochromes and an energy-converting hydrogenase for the reoxidation of the ferredoxin produced by the soluble heterodisulfide reductase indicates that Methanomassiliicoccales employ a new mode of energy metabolism, which differs from that proposed for the obligately methylotrophic Methanosphaera stadtmanae. Instead, all strains possess a novel complex that is related to the F420:methanophenazine oxidoreductase (Fpo) of Methanosarcinales butlacks an F420-oxidizing module, resembling the apparently ferredoxin-dependent Fpo-like homolog in Methanosaeta thermophila. Since all Methanomassiliicoccales also lack the subunit E of the membrane-bound heterodisulfide reductase (HdrDE), wepropose that the Fpo-like complex interacts directly with subunit D, forming an energy-converting ferredoxin: heterodisulfideoxidoreductase. The dual function of heterodisulfide in Methanomassiliicoccales, which serves both in electron bifurcation and as terminal acceptor in a membrane-associated redox process, may be a unique characteristic of the novel order.
Collapse
Affiliation(s)
- Kristina Lang
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Schuldes
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andreas Klingl
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
19
|
Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 2015; 347:44-9. [PMID: 25554780 DOI: 10.1126/science.1259859] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton-pumping complex I of the mitochondrial respiratory chain is among the largest and most complicated membrane protein complexes. The enzyme contributes substantially to oxidative energy conversion in eukaryotic cells. Its malfunctions are implicated in many hereditary and degenerative disorders. We report the x-ray structure of mitochondrial complex I at a resolution of 3.6 to 3.9 angstroms, describing in detail the central subunits that execute the bioenergetic function. A continuous axis of basic and acidic residues running centrally through the membrane arm connects the ubiquinone reduction site in the hydrophilic arm to four putative proton-pumping units. The binding position for a substrate analogous inhibitor and blockage of the predicted ubiquinone binding site provide a model for the "deactive" form of the enzyme. The proposed transition into the active form is based on a concerted structural rearrangement at the ubiquinone reduction site, providing support for a two-state stabilization-change mechanism of proton pumping.
Collapse
Affiliation(s)
- Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany.
| | - Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Hamid Nasiri
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany
| | - Karin Siegmund
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Ulrich Brandt
- Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
20
|
Martín M, Noarbe DM, Serrot PH, Sabater B. The rise of the photosynthetic rate when light intensity increases is delayed in ndh gene-defective tobacco at high but not at low CO2 concentrations. FRONTIERS IN PLANT SCIENCE 2015; 6:34. [PMID: 25709611 PMCID: PMC4321573 DOI: 10.3389/fpls.2015.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/13/2015] [Indexed: 05/02/2023]
Abstract
The 11 plastid ndh genes have hovered frequently on the edge of dispensability, being absent in the plastid DNA of many algae and certain higher plants. We have compared the photosynthetic activity of tobacco (Nicotiana tabacum, cv. Petit Havana) with five transgenic lines (ΔndhF, pr-ΔndhF, T181D, T181A, and ndhF FC) and found that photosynthetic performance is impaired in transgenic ndhF-defective tobacco plants at rapidly fluctuating light intensities and higher than ambient CO2 concentrations. In contrast to wild type and ndhF FC, which reach the maximum photosynthetic rate in less than 1 min when light intensity suddenly increases, ndh defective plants (ΔndhF and T181A) show up to a 5 min delay in reaching the maximum photosynthetic rate at CO2 concentrations higher than the ambient 360 ppm. Net photosynthesis was determined at different CO2 concentrations when sequences of 130, 870, 61, 870, and 130 μmol m(-2) s(-1) PAR sudden light changes were applied to leaves and photosynthetic efficiency and entropy production (Sg) were determined as indicators of photosynthesis performance. The two ndh-defective plants, ΔndhF and T181A, had lower photosynthetic efficiency and higher Sg than wt, ndhF FC and T181D tobacco plants, containing full functional ndh genes, at CO2 concentrations above 400 ppm. We propose that the Ndh complex improves cyclic electron transport by adjusting the redox level of transporters during the low light intensity stage. In ndhF-defective strains, the supply of electrons through the Ndh complex fails, transporters remain over-oxidized (specially at high CO2 concentrations) and the rate of cyclic electron transport is low, impairing the ATP level required to rapidly reach high CO2 fixation rates in the following high light phase. Hence, ndh genes could be dispensable at low but not at high atmospheric concentrations of CO2.
Collapse
Affiliation(s)
- Mercedes Martín
- Department of Life Sciences, University of Alcalá, Alcalá de HenaresSpain
| | - Dolores M. Noarbe
- Department of Physical Chemistry, University of Alcalá, Alcalá de HenaresSpain
| | - Patricia H. Serrot
- Department of Life Sciences, University of Alcalá, Alcalá de HenaresSpain
| | - Bartolomé Sabater
- Department of Life Sciences, University of Alcalá, Alcalá de HenaresSpain
- *Correspondence: Bartolomé Sabater, Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain e-mail:
| |
Collapse
|
21
|
Respiratory complex I fromEscherichia colidoes not transport Na+in the absence of its NuoL subunit. FEBS Lett 2014; 588:4520-5. [DOI: 10.1016/j.febslet.2014.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/23/2022]
|