1
|
Hashimoto M, Miyagawa K, Singh M, Katayama K, Shoji M, Furutani Y, Shigeta Y, Kandori H. Specific zinc binding to heliorhodopsin. Phys Chem Chem Phys 2023; 25:3535-3543. [PMID: 36637167 DOI: 10.1039/d2cp04718g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heliorhodopsins (HeRs), a recently discovered family of rhodopsins, have an inverted membrane topology compared to animal and microbial rhodopsins. The slow photocycle of HeRs suggests a light-sensor function, although the actual function remains unknown. Although HeRs exhibit no specific binding of monovalent cations or anions, recent ATR-FTIR spectroscopy studies have demonstrated the binding of Zn2+ to HeR from Thermoplasmatales archaeon (TaHeR) and 48C12. Even though ion-specific FTIR spectra were observed for many divalent cations, only helical structural perturbations were observed for Zn2+-binding, suggesting a possible modification of the HeR function by Zn2+. The present study shows that Zn2+-binding lowers the thermal stability of TaHeR, and slows back proton transfer to the retinal Schiff base (M decay) during its photocycle. Zn2+-binding was similarly observed for a TaHeR opsin that lacks the retinal chromophore. We then studied the Zn2+-binding site by means of the ATR-FTIR spectroscopy of site-directed mutants. Among five and four mutants of His and Asp/Glu, respectively, only E150Q exhibited a completely different spectral feature of the α-helix (amide-I) in ATR-FTIR spectroscopy, suggesting that E150 is responsible for Zn2+-binding. Molecular dynamics (MD) simulations built a coordination structure of Zn2+-bound TaHeR, where E150 and protein bound water molecules participate in direct coordination. It was concluded that the specific binding site of Zn2+ is located at the cytoplasmic side of TaHeR, and that Zn2+-binding affects the structure and structural dynamics, possibly modifying the unknown function of TaHeR.
Collapse
Affiliation(s)
- Masanori Hashimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Koichi Miyagawa
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan. .,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan. .,JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan. .,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan. .,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Kandori H. Structure/Function Study of Photoreceptive Proteins by FTIR Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry & OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
3
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
4
|
Iwaki M, Refaeli B, van Dijk L, Hiller R, Giladi M, Kandori H, Khananshvili D. Structure-affinity insights into the Na + and Ca 2+ interactions with multiple sites of a sodium-calcium exchanger. FEBS J 2020; 287:4678-4695. [PMID: 32056381 DOI: 10.1111/febs.15250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/22/2019] [Accepted: 02/12/2020] [Indexed: 01/30/2023]
Abstract
Selective recognition and transport of Na+ and Ca2+ ions by sodium-calcium exchanger (NCX) proteins is a primary prerequisite for Ca2+ signaling and homeostasis. Twelve ion-coordinating residues are highly conserved among NCXs, and distinct NCX orthologs contain two or three carboxylates, while sharing a common ion-exchange stoichiometry (3Na+ :1Ca2+ ). How these structural differences affect the ion-binding affinity, selectivity, and transport rates remains unclear. Here, the mutational effects of three carboxylates (E54, E213, and D240) were analyzed on the ion-exchange rates in the archaeal NCX from Methanococcus jannaschii and ion-induced structure-affinity changes were monitored by attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR). The D240N mutation elevated the ion-transport rates by twofold to threefold, meaning that the deprotonation of D240 is not essential for transport catalysis. In contrast, mutating E54 or E213 to A, D, N, or Q dramatically decreased the ion-transport rates. ATR-FTIR revealed high- and low-affinity binding of Na+ or Ca2+ with E54 and E213, but not with D240. These findings reveal distinct structure-affinity states at specific ion-binding sites in the inward-facing (IF) and outward-facing orientation. Collectively, two multidentate carboxylate counterparts (E54 and E213) play a critical role in determining the ion coordination/transport in prokaryotic and eukaryotic NCXs, whereas the ortholog substitutions in prokaryotes (aspartate) and eukaryotes (asparagine) at the 240 position affect the ion-transport rates differently (kcat ), probably due to the structural differences in the transition state.
Collapse
Affiliation(s)
- Masayo Iwaki
- Department of Life Science and Applied Chemistry and OptoBioTechnology Research Center, Nagoya Institute of Technology, Japan
| | - Bosmat Refaeli
- Department of Physiology and Pharmacology, Tel-Aviv University, Israel
| | - Liat van Dijk
- Department of Physiology and Pharmacology, Tel-Aviv University, Israel
| | - Reuben Hiller
- Department of Physiology and Pharmacology, Tel-Aviv University, Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Tel-Aviv University, Israel
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry and OptoBioTechnology Research Center, Nagoya Institute of Technology, Japan
| | | |
Collapse
|
5
|
Katayama K, Furutani Y, Iwaki M, Fukuda T, Imai H, Kandori H. “In situ” observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy. Phys Chem Chem Phys 2018; 20:3381-3387. [DOI: 10.1039/c7cp07277e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATR-FTIR spectroscopic study elucidates the novel role of Cl−-binding in primate long-wavelength-sensitive (LWS) visual pigment.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science
- Okazaki 444-8585
- Japan
| | - Masayo Iwaki
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Tetsuya Fukuda
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Hiroo Imai
- Primate Research Institute
- Kyoto University
- Inuyama 484-8506
- Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBio Technology Research Center
| |
Collapse
|
6
|
Ito S, Iwaki M, Sugita S, Abe-Yoshizumi R, Iwata T, Inoue K, Kandori H. Unique Hydrogen Bonds in Membrane Protein Monitored by Whole Mid-IR ATR Spectroscopy in Aqueous Solution. J Phys Chem B 2017; 122:165-170. [PMID: 29215887 DOI: 10.1021/acs.jpcb.7b11064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein function is coupled to its structural changes, for which stimulus-induced difference Fourier-transform infrared (FTIR) spectroscopy is a powerful method. By optimizing the attenuated total reflection (ATR)-FTIR analysis on sodium-pumping rhodopsin KR2 in aqueous solution, we first measured the accurate difference spectra upon sodium binding in the whole IR region (4000-1000 cm-1). The new spectral window allows the analysis of not only the fingerprint region (1800-1000 cm-1) but also the hydrogen-bonding donor region (4000-1800 cm-1), revealing an unusually strong hydrogen bond of Tyr located in the sodium binding site of KR2. Progress in ATR-FTIR difference spectroscopy provides an approach to investigating stimulus-induced structural changes of membrane proteins under physiological aqueous conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
7
|
Karim K, Giribabu N, Muniandy S, Salleh N. Vacuolar-ATPase (V-ATPase) Mediates Progesterone-Induced Uterine Fluid Acidification in Rats. J Membr Biol 2015; 249:65-76. [PMID: 26403527 DOI: 10.1007/s00232-015-9848-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/18/2015] [Indexed: 12/24/2022]
Abstract
We hypothesized that progesterone-induced decrease in uterine fluid pH involves V-ATPase. In this study, expression and functional activity of V-ATPase in uterus were investigated under progesterone influence. Ovariectomized adult female rats received subcutaneous injection of estradiol-17β (1 µg/kg/day) or progesterone (20 mg/kg/day) for 3 days or 3 days estradiol-17β followed by 3 days vehicle, progesterone, or estradiol-17β plus progesterone. Mifepristone, a progesterone receptor blocker, was concomitantly given to the rats which received progesterone. A day after last injection, rate of uterine fluid secretion, its HCO3 (-) concentration, and pH were determined via in vivo uterine perfusion in rats under anesthesia. V-ATPase inhibitor, bafilomycin, was introduced into the perfusion buffer, and changes in these parameters were observed. Expression of V-ATPase A1 and B1/2 proteins and mRNAs in uterus were quantified by Western blotting and real-time PCR, respectively. Distribution of these proteins was observed by immunohistochemistry. Our findings showed that under progesterone influence, uterine fluid secretion rate, HCO3 (-) concentration, and pH were significantly reduced. Administration of bafilomycin did not cause significant changes in fluid secretion rate; however, HCO3 (-) concentration and pH were significantly elevated. In parallel with these changes, expression of V-ATPase A1 and B1/2 proteins and mRNAs were significantly increased with these proteins highly distributed in uterine luminal and glandular epithelia. In conclusion, increased expression and functional activity of V-ATPase were most likely responsible for the decreased in uterine fluid pH observed under progesterone influence.
Collapse
Affiliation(s)
- Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Schartner J, Hoeck N, Güldenhaupt J, Mavarani L, Nabers A, Gerwert K, Kötting C. Chemical Functionalization of Germanium with Dextran Brushes for Immobilization of Proteins Revealed by Attenuated Total Reflection Fourier Transform Infrared Difference Spectroscopy. Anal Chem 2015; 87:7467-75. [PMID: 26102158 DOI: 10.1021/acs.analchem.5b01823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein immobilization studied by attenuated total reflection Fourier transform infrared (ATR-FT-IR) difference spectroscopy is an emerging field enabling the study of proteins at atomic detail. Gold or glass surfaces are frequently used for protein immobilization. Here, we present an alternative method for protein immobilization on germanium. Because of its high refractive index and broad spectral window germanium is the best material for ATR-FT-IR spectroscopy of thin layers. So far, this technique was mainly used for protein monolayers, which lead to a limited signal-to-noise ratio. Further, undesired protein-protein interactions can occur in a dense layer. Here, the germanium surface was functionalized with thiols and stepwise a dextran brush was generated. Each step was monitored by ATR-FT-IR spectroscopy. We compared a 70 kDa dextran with a 500 kDa dextran regarding the binding properties. All surfaces were characterized by atomic force microscopy, revealing thicknesses between 40 and 110 nm. To analyze the capability of our system we utilized N-Ras on mono-NTA (nitrilotriacetic acid) functionalized dextran, and the amount of immobilized Ras corresponded to several monolayers. The protein stability and loading capacity was further improved by means of tris-NTA for immobilization. Small-molecule-induced changes were revealed with an over 3 times higher signal-to-noise ratio compared to monolayers. This improvement may allow the observation of very small and so far hidden changes in proteins upon stimulus. Furthermore, we immobilized green fluorescent protein (GFP) and mCherry simultaneously enabling an analysis of the surface by fluorescence microscopy. The absence of a Förster resonance energy transfer (FRET) signal demonstrated a large protein-protein distance, indicating an even distribution of the protein within the dextran.
Collapse
Affiliation(s)
- Jonas Schartner
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Nina Hoeck
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Jörn Güldenhaupt
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Laven Mavarani
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Andreas Nabers
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| | - Carsten Kötting
- Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr-University, 44801 Bochum, Germany
| |
Collapse
|