1
|
Petushkova E, Khasimov M, Mayorova E, Delegan Y, Frantsuzova E, Bogun A, Galkina E, Tsygankov A. The Complete Genome of a Novel Typical Species Thiocapsa bogorovii and Analysis of Its Central Metabolic Pathways. Microorganisms 2024; 12:391. [PMID: 38399794 PMCID: PMC10892978 DOI: 10.3390/microorganisms12020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The purple sulfur bacterium Thiocapsa roseopersicina BBS is interesting from both fundamental and practical points of view. It possesses a thermostable HydSL hydrogenase, which is involved in the reaction of reversible hydrogen activation and a unique reaction of sulfur reduction to hydrogen sulfide. It is a very promising enzyme for enzymatic hydrogenase electrodes. There are speculations that HydSL hydrogenase of purple bacteria is closely related to sulfur metabolism, but confirmation is required. For that, the full genome sequence is necessary. Here, we sequenced and assembled the complete genome of this bacterium. The analysis of the obtained whole genome, through an integrative approach that comprised estimating the Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (DDH) parameters, allowed for validation of the systematic position of T. roseopersicina as T. bogorovii BBS. For the first time, we have assembled the whole genome of this typical strain of a new bacterial species and carried out its functional description against another purple sulfur bacterium: Allochromatium vinosum DSM 180T. We refined the automatic annotation of the whole genome of the bacteria T. bogorovii BBS and localized the genomic positions of several studied genes, including those involved in sulfur metabolism and genes encoding the enzymes required for the TCA and glyoxylate cycles and other central metabolic pathways. Eleven additional genes coding proteins involved in pigment biosynthesis was found.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Makhmadyusuf Khasimov
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Ekaterina Mayorova
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Elena Galkina
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia;
| | - Anatoly Tsygankov
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| |
Collapse
|
2
|
Abstract
Wetlands are the major natural source of methane, an important greenhouse gas. The sulfur and methane cycles in wetlands are linked—e.g., a strong sulfur cycle can inhibit methanogenesis. Although there has historically been a clear distinction drawn between methane and sulfur oxidizers, here, we isolated a methanotroph that also performed respiratory oxidization of sulfur compounds. We experimentally demonstrated that thiotrophy and methanotrophy are metabolically compatible, and both metabolisms could be expressed simultaneously in a single microorganism. These findings suggest that mixotrophic methane/sulfur-oxidizing bacteria are a previously overlooked component of environmental methane and sulfur cycles. This creates a framework for a better understanding of these redox cycles in natural and engineered wetlands. Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic–anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, ‘Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox–rDsr pathway and the S4I system. Strain HY1 employed the Calvin–Benson–Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic–anoxic interface environments.
Collapse
|
3
|
Khasimov MK, Petushkova EP, Khusnutdinova AN, Zorin NA, Batyrova KA, Yakunin AF, Tsygankov AA. The HydS C-terminal domain of the Thiocapsa bogorovii HydSL hydrogenase is involved in membrane anchoring and electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148492. [PMID: 34487705 DOI: 10.1016/j.bbabio.2021.148492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Thiocapsa bogorovii BBS (former name Thiocapsa roseopersicina) contains HydSL hydrogenase belonging to 1e subgroup of NiFe hydrogenases (isp-type). The operon of these hydrogenases contains gene for small subunit (hydS), gene for large subunit (hupL), and genes isp1 and isp2 between them. It is predicted that last two genes code electron transport careers for electron transfer from/to HydSL hydrogenase. However, the interaction between them is unclear. The aim of this study was to determine structural and functional role of T. bogorovii HydS C-terminal end. For this purpose, we modelled all subunits of the complex HydS-HydL-Isp1-Isp2. Hydrophobicity surface analysis of the Isp1 model revealed highly hydrophobic helices suggesting potential membrane localization, as well as the hydrophilic C-terminus, which is likely localized outside of membrane. Isp1 model was docked with models of full length and C-terminal truncated HydSL hydrogenases and results illustrate the possibility of HydSL membrane anchoring via transmembrane Isp1 with essential participation of C-terminal end of HydS in the interaction. C-terminal end of HydS subunit was deleted and our studies revealed that the truncated HydSL hydrogenase detached from cellular membranes in contrast to native hydrogenase. It is known that HydSL hydrogenase in T. bogorovii performs the reaction of elemental sulfur reduction (S0 + H2 = ≥H2S). Cells with truncated HydS produced much less H2S in the presence of H2 and S0. Thus, our data support the conclusion that C-terminal end of HydS subunit participates in interaction of HydSL hydrogenase with Isp1 protein for membrane anchoring and electron transfer.
Collapse
Affiliation(s)
- Makhmadyusuf K Khasimov
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Ekaterina P Petushkova
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Anna N Khusnutdinova
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Nikolay A Zorin
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Khorcheska A Batyrova
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia
| | - Alexander F Yakunin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Anatoly A Tsygankov
- Federal Research Center "Pushchino's center of Biological Research", Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Moscow region 142290, Russia.
| |
Collapse
|
4
|
Duzs Á, Miklovics N, Paragi G, Rákhely G, Tóth A. Insights into the catalytic mechanism of type VI sulfide:quinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148337. [PMID: 33202220 DOI: 10.1016/j.bbabio.2020.148337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Sulfide oxidation is catalyzed by ancient membrane-bound sulfide:quinone oxidoreductases (SQR) which are classified into six different types. For catalysis of sulfide oxidation, all SQRs require FAD cofactor and a redox-active centre in the active site, usually formed between conserved essential cysteines. SQRs of different types have variation in the number and position of cysteines, highlighting the potential for diverse catalytic mechanisms. The photosynthetic purple sulfur bacterium, Thiocapsa roseopersicina contains a type VI SQR enzyme (TrSqrF) having unusual catalytic parameters and four cysteines likely involved in the catalysis. Site-directed mutagenesis was applied to identify the role of cysteines in the catalytic process of TrSqrF. Based on biochemical and kinetic characterization of these TrSqrF variants, Cys121 is identified as crucial for enzyme activity. The cofactor is covalently bound via a heterodisulfide bridge between Cys121 and the C8M group of FAD. Mutation of another cysteine present in all SQRs (Cys332) causes remarkably decreased enzyme activity (14.6% of wild type enzyme) proving important, but non-essential role of this residue in enzyme catalysis. The sulfhydril-blocking agent, iodoacetamide can irreversibly inactivate TrSqrF but only if substrates are present and the enzyme is actively catalyzing its reaction. When the enzyme is inhibited by iodoacetamide, the FAD cofactor is released. The inhibition studies support a mechanism that entails opening and reforming of the heterodisulfide bridge during the catalytic cycle of TrSqrF. Our study thus reports the first detailed structure-function analysis of a type VI SQR enzyme which enables the proposal of a distinct mechanism of sulfide oxidation for this class.
Collapse
Affiliation(s)
- Ágnes Duzs
- Institute of Biophysics, Biological Research Centre, Temesvári krt 62., H-6726 Szeged, Hungary; Department of Biotechnology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Nikolett Miklovics
- Institute of Biophysics, Biological Research Centre, Temesvári krt 62., H-6726 Szeged, Hungary; Department of Biotechnology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; Doctoral School in Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Gábor Paragi
- Institute of Physics, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary; MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm square 8, H-6720 Szeged, Hungary
| | - Gábor Rákhely
- Institute of Biophysics, Biological Research Centre, Temesvári krt 62., H-6726 Szeged, Hungary; Department of Biotechnology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| | - András Tóth
- Institute of Biophysics, Biological Research Centre, Temesvári krt 62., H-6726 Szeged, Hungary; Department of Biotechnology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| |
Collapse
|
5
|
Kessler AJ, Chen YJ, Waite DW, Hutchinson T, Koh S, Popa ME, Beardall J, Hugenholtz P, Cook PLM, Greening C. Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments. Nat Microbiol 2019; 4:1014-1023. [DOI: 10.1038/s41564-019-0391-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/28/2019] [Indexed: 11/09/2022]
|
6
|
Complete genome sequence of " Thiodictyon syntrophicum" sp. nov. strain Cad16 T, a photolithoautotrophic purple sulfur bacterium isolated from the alpine meromictic Lake Cadagno. Stand Genomic Sci 2018; 13:14. [PMID: 29774086 PMCID: PMC5944118 DOI: 10.1186/s40793-018-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
“Thiodictyon syntrophicum” sp. nov. strain Cad16T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria. The type strain Cad16T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno.
Collapse
|
7
|
Duzs Á, Tóth A, Németh B, Balogh T, Kós PB, Rákhely G. A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria. Appl Microbiol Biotechnol 2018; 102:5133-5147. [PMID: 29680900 DOI: 10.1007/s00253-018-8973-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
Abstract
Sulfide detoxification can be catalyzed by ancient membrane-bound flavoproteins, sulfide:quinone oxidoreductases (Sqr), which have important roles in sulfide homeostasis and sulfide-dependent energy conservation processes by transferring electrons from sulfide to respiratory or photosynthetic membrane electron flow. Sqr enzymes have been categorized into six groups. Several members of the groups I, II, III, and V are well-known, but type IV and VI Sqrs are, as yet, uncharacterized or hardly characterized at all. Here, we report detailed characterization of a type VI sulfide:quinone oxidoreductase (TrSqrF) from a purple sulfur bacterium, Thiocapsa roseopersicina. Phylogenetic analysis classified this enzyme in a special group composed of SqrFs of endosymbionts, while a weaker relationship could be observed with SqrF of Chlorobaculum tepidum which is the only type VI enzyme characterized so far. Directed mutagenesis experiments showed that TrSqrF contributed substantially to the sulfide:quinone oxidoreductase activity of the membranes. Expression of the sqrF gene could be induced by sulfide. Homologous recombinant TrSqrF protein was expressed and purified from the membranes of a SqrF-deleted T. roseopersicina strain. The purified protein contains redox-active covalently bound FAD cofactor. The recombinant TrSqrF enzyme catalyzes sulfur-dependent quinone reduction and prefers ubiquinone-type quinone compounds. Kinetic parameters of TrSqrF show that the affinity of the enzyme is similar to duroquinone and decylubiquinone, but the reaction has substantially lower activation energy with decylubiquinone, indicating that the quinone structure has an effect on the catalytic process. TrSqrF enzyme affinity for sulfide is low, therefore, in agreement with the gene expressional analyis, SqrF could play a role in energy-conserving sulfide oxidation at high sulfide concentrations. TrSqrF is a good model enzyme for the subgroup of type VI Sqrs of endosymbionts and its characterization might provide deeper insight into the molecular details of the ancient, anoxic, energy-gaining processes using sulfide as an electron donor.
Collapse
Affiliation(s)
- Ágnes Duzs
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - András Tóth
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Brigitta Németh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Tímea Balogh
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Péter B Kós
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary. .,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary.
| |
Collapse
|
8
|
HupO, a Novel Regulator Involved in Thiosulfate-Responsive Control of HupSL [NiFe]-Hydrogenase Synthesis in Thiocapsa roseopersicina. Appl Environ Microbiol 2016; 82:2039-2049. [PMID: 26801573 DOI: 10.1128/aem.04041-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022] Open
Abstract
[NiFe]-hydrogenases are regulated by various factors to fulfill their physiological functions in bacterial cells. The photosynthetic purple sulfur bacterium Thiocapsa roseopersicina harbors four functional [NiFe]-hydrogenases: HynSL, HupSL, Hox1, and Hox2. Most of these hydrogenases are functionally linked to sulfur metabolism, and thiosulfate has a central role in this organism. The membrane-associated Hup hydrogenases have been shown to play a role in energy conservation through hydrogen recycling. The expression of Hup-type hydrogenases is regulated by H2 in Rhodobacter capsulatus and Cupriavidus necator; however, it has been shown that the corresponding hydrogen-sensing system is nonfunctional in T. roseopersicina and that thiosulfate is a regulating factor of hup expression. Here, we describe the discovery and analysis of mutants of a putative regulator (HupO) of the Hup hydrogenase in T. roseopersicina. HupO appears to mediate the transcriptional repression of Hup enzyme synthesis under low-thiosulfate conditions. We also demonstrate that the presence of the Hox1 hydrogenase strongly influences Hup enzyme synthesis in that hup expression was decreased significantly in the hox1 mutant. This reduction in Hup synthesis could be reversed by mutation of hupO, which resulted in strongly elevated hup expression, as well as Hup protein levels, and concomitant in vivo hydrogen uptake activity in the hox1 mutant. However, this regulatory control was observed only at low thiosulfate concentrations. Additionally, weak hydrogen-dependent hup expression was shown in the hupO mutant strain lacking the Hox1 hydrogenase. HupO-mediated Hup regulation therefore appears to link thiosulfate metabolism and the hydrogenase network in T. roseopersicina.
Collapse
|
9
|
Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME JOURNAL 2015; 10:761-77. [PMID: 26405831 DOI: 10.1038/ismej.2015.153] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/20/2015] [Accepted: 07/20/2015] [Indexed: 11/08/2022]
Abstract
Recent physiological and ecological studies have challenged the long-held belief that microbial metabolism of molecular hydrogen (H2) is a niche process. To gain a broader insight into the importance of microbial H2 metabolism, we comprehensively surveyed the genomic and metagenomic distribution of hydrogenases, the reversible enzymes that catalyse the oxidation and evolution of H2. The protein sequences of 3286 non-redundant putative hydrogenases were curated from publicly available databases. These metalloenzymes were classified into multiple groups based on (1) amino acid sequence phylogeny, (2) metal-binding motifs, (3) predicted genetic organisation and (4) reported biochemical characteristics. Four groups (22 subgroups) of [NiFe]-hydrogenase, three groups (6 subtypes) of [FeFe]-hydrogenases and a small group of [Fe]-hydrogenases were identified. We predict that this hydrogenase diversity supports H2-based respiration, fermentation and carbon fixation processes in both oxic and anoxic environments, in addition to various H2-sensing, electron-bifurcation and energy-conversion mechanisms. Hydrogenase-encoding genes were identified in 51 bacterial and archaeal phyla, suggesting strong pressure for both vertical and lateral acquisition. Furthermore, hydrogenase genes could be recovered from diverse terrestrial, aquatic and host-associated metagenomes in varying proportions, indicating a broad ecological distribution and utilisation. Oxygen content (pO2) appears to be a central factor driving the phylum- and ecosystem-level distribution of these genes. In addition to compounding evidence that H2 was the first electron donor for life, our analysis suggests that the great diversification of hydrogenases has enabled H2 metabolism to sustain the growth or survival of microorganisms in a wide range of ecosystems to the present day. This work also provides a comprehensive expanded system for classifying hydrogenases and identifies new prospects for investigating H2 metabolism.
Collapse
|