1
|
Chloroplast envelope ATPase PGA1/AtFtsH12 is required for chloroplast protein accumulation and cytosol-chloroplast protein homeostasis in Arabidopsis. J Biol Chem 2022; 298:102489. [PMID: 36113581 PMCID: PMC9574505 DOI: 10.1016/j.jbc.2022.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
The establishment of photosynthetic protein complexes during chloroplast development requires the influx of a large number of chloroplast proteins that are encoded by the nuclear genome, which is critical for cytosol and chloroplast protein homeostasis and chloroplast development. However, the mechanisms regulating this process are still not well understood in higher plants. Here, we report the isolation and characterization of the pale green Arabidopsis pga1-1 mutant, which is defective in chloroplast development and chloroplast protein accumulation. Using genetic and biochemical evidence, we reveal that PGA1 encodes AtFtsH12, a chloroplast envelope-localized protein of the FtsH family proteins. We determined a G703R mutation in the GAD motif of the conserved ATPase domain renders the pga1-1 a viable hypomorphic allele of the essential gene AtFtsH12. In de-etiolation assays, we showed that the accumulation of photosynthetic proteins and the expression of photosynthetic genes were impaired in pga1-1. Using the FNRctp-GFP and pTAC2-GFP reporters, we demonstrated that AtFtsH12 was required for the accumulation of chloroplast proteins in vivo. Interestingly, we identified an increase in expression of the mutant AtFtsH12 gene in pga1-1, suggesting a feedback regulation. Moreover, we found that cytosolic and chloroplast proteostasis responses were triggered in pga1-1. Together, taking advantage of the novel pga1-1 mutant, we demonstrate the function of AtFtsH12 in chloroplast protein homeostasis and chloroplast development.
Collapse
|
2
|
Guo Y, Ju Y, Chen D, Wang L. Research on the Computational Prediction of Essential Genes. Front Cell Dev Biol 2021; 9:803608. [PMID: 34938741 PMCID: PMC8685449 DOI: 10.3389/fcell.2021.803608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Genes, the nucleotide sequences that encode a polypeptide chain or functional RNA, are the basic genetic unit controlling biological traits. They are the guarantee of the basic structures and functions in organisms, and they store information related to biological factors and processes such as blood type, gestation, growth, and apoptosis. The environment and genetics jointly affect important physiological processes such as reproduction, cell division, and protein synthesis. Genes are related to a wide range of phenomena including growth, decline, illness, aging, and death. During the evolution of organisms, there is a class of genes that exist in a conserved form in multiple species. These genes are often located on the dominant strand of DNA and tend to have higher expression levels. The protein encoded by it usually either performs very important functions or is responsible for maintaining and repairing these essential functions. Such genes are called persistent genes. Among them, the irreplaceable part of the body’s life activities is the essential gene. For example, when starch is the only source of energy, the genes related to starch digestion are essential genes. Without them, the organism will die because it cannot obtain enough energy to maintain basic functions. The function of the proteins encoded by these genes is thought to be fundamental to life. Nowadays, DNA can be extracted from blood, saliva, or tissue cells for genetic testing, and detailed genetic information can be obtained using the most advanced scientific instruments and technologies. The information gained from genetic testing is useful to assess the potential risks of disease, and to help determine the prognosis and development of diseases. Such information is also useful for developing personalized medication and providing targeted health guidance to improve the quality of life. Therefore, it is of great theoretical and practical significance to identify important and essential genes. In this paper, the research status of essential genes and the essential genome database of bacteria are reviewed, the computational prediction method of essential genes based on communication coding theory is expounded, and the significance and practical application value of essential genes are discussed.
Collapse
Affiliation(s)
- Yuxin Guo
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Lihong Wang
- Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
3
|
Rea G, Antonacci A, Lambreva MD, Mattoo AK. Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:193-206. [PMID: 29807591 DOI: 10.1016/j.plantsci.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Retrograde signaling is an intracellular communication process defined by cues generated in chloroplast and mitochondria which traverse membranes to their destination in the nucleus in order to regulate nuclear gene expression and protein synthesis. The coding and decoding of such organellar message(s) involve gene medleys and metabolic components about which more is known in higher plants than the unicellular organisms such as algae. Chlamydomonas reinhardtii is an oxygenic microalgal model for genetic and physiological studies. It harbors a single chloroplast and is amenable for generating mutants. The focus of this review is on studies that delineate retrograde signaling in Chlamydomonas vis a vis higher plants. Thus, communication networks between chloroplast and nucleus involving photosynthesis- and ROS-generated signals, functional tetrapyrrole biosynthesis intermediates, and Ca2+-signaling that modulate nuclear gene expression in this alga are discussed. Conceptually, different signaling components converge to regulate either the same or functionally-overlapping gene products.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Autar K Mattoo
- The Henry A Wallace Agricultural Research Centre, U.S. Department of Agriculture, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
4
|
D’Andrea L, Simon-Moya M, Llorente B, Llamas E, Marro M, Loza-Alvarez P, Li L, Rodriguez-Concepcion M. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1557-1568. [PMID: 29385595 PMCID: PMC5888976 DOI: 10.1093/jxb/erx491] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/15/2017] [Indexed: 05/18/2023]
Abstract
Profound metabolic and structural changes are required for fleshy green fruits to ripen and become colorful and tasty. In tomato (Solanum lycopersicum), fruit ripening involves the differentiation of chromoplasts, specialized plastids that accumulate carotenoid pigments such as β-carotene (pro-vitamin A) and lycopene. Here, we explored the role of the plastidial Clp protease in chromoplast development and carotenoid accumulation. Ripening-specific silencing of one of the subunits of the Clp proteolytic complex resulted in β-carotene-enriched fruits that appeared orange instead of red when ripe. Clp-defective fruit displayed aberrant chromoplasts and up-regulated expression of nuclear genes encoding the tomato homologs of Orange (OR) and ClpB3 chaperones, most probably to deal with misfolded and aggregated proteins that could not be degraded by the Clp protease. ClpB3 and OR chaperones protect the carotenoid biosynthetic enzymes deoxyxylulose 5-phosphate synthase and phytoene synthase, respectively, from degradation, whereas OR chaperones additionally promote chromoplast differentiation by preventing the degradation of carotenoids such as β-carotene. We conclude that the Clp protease contributes to the differentiation of chloroplasts into chromoplasts during tomato fruit ripening, acting in co-ordination with specific chaperones that alleviate protein folding stress, promote enzyme stability and accumulation, and prevent carotenoid degradation.
Collapse
Affiliation(s)
- Lucio D’Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Miguel Simon-Moya
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Mónica Marro
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Mediterranean Technology Park, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Mediterranean Technology Park, Castelldefels, Barcelona, Spain
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
- Correspondence:
| |
Collapse
|
5
|
Yurina NP, Sharapova LS, Odintsova MS. Structure of Plastid Genomes of Photosynthetic Eukaryotes. BIOCHEMISTRY (MOSCOW) 2017; 82:678-691. [PMID: 28601077 DOI: 10.1134/s0006297917060049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents current views on the plastid genomes of higher plants and summarizes data on the size, structural organization, gene content, and other features of plastid DNAs. Special emphasis is placed on the properties of organization of land plant plastid genomes (nucleoids) that distinguish them from bacterial genomes. The prospects of genetic engineering of chloroplast genomes are discussed.
Collapse
Affiliation(s)
- N P Yurina
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
6
|
Colombo M, Tadini L, Peracchio C, Ferrari R, Pesaresi P. GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:1427. [PMID: 27713755 PMCID: PMC5032792 DOI: 10.3389/fpls.2016.01427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/07/2016] [Indexed: 05/04/2023]
Abstract
The GENOMES UNCOUPLED 1 (GUN1) gene has been reported to encode a chloroplast-localized pentatricopeptide-repeat protein, which acts to integrate multiple indicators of plastid developmental stage and altered plastid function, as part of chloroplast-to-nucleus retrograde communication. However, the molecular mechanisms underlying signal integration by GUN1 have remained elusive, up until the recent identification of a set of GUN1-interacting proteins, by co-immunoprecipitation and mass-spectrometric analyses, as well as protein-protein interaction assays. Here, we review the molecular functions of the different GUN1 partners and propose a major role for GUN1 as coordinator of chloroplast translation, protein import, and protein degradation. This regulatory role is implemented through proteins that, in most cases, are part of multimeric protein complexes and whose precise functions vary depending on their association states. Within this framework, GUN1 may act as a platform to promote specific functions by bringing the interacting enzymes into close proximity with their substrates, or may inhibit processes by sequestering particular pools of specific interactors. Furthermore, the interactions of GUN1 with enzymes of the tetrapyrrole biosynthesis (TPB) pathway support the involvement of tetrapyrroles as signaling molecules in retrograde communication.
Collapse
Affiliation(s)
- Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Roberto Ferrari
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
- *Correspondence: Paolo Pesaresi
| |
Collapse
|
7
|
Zhang L. Chloroplast Biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:759-60. [PMID: 26113324 DOI: 10.1016/j.bbabio.2015.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences Nanxincun 20, Xiangshan, Beijing, 100093, CHINA.
| |
Collapse
|