1
|
Petrovskaya LE, Lukashev EP, Lyukmanova EN, Shulepko MA, Kryukova EA, Ziganshin RH, Dolgikh DA, Maksimov EG, Rubin AB, Kirpichnikov MP, Lanyi JK, Balashov SP. Expression of Xanthorhodopsin in Escherichia coli. Protein J 2023:10.1007/s10930-023-10109-5. [DOI: 10.1007/s10930-023-10109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
|
2
|
Han CT, Nguyen KDQ, Berkow MW, Hussain S, Kiani A, Kinnebrew M, Idso MN, Baxter N, Chang E, Aye E, Winslow E, Rahman M, Seppälä S, O'Malley MA, Chmelka BF, Mertz B, Han S. Lipid membrane mimetics and oligomerization tune functional properties of proteorhodopsin. Biophys J 2023; 122:168-179. [PMID: 36352784 PMCID: PMC9822798 DOI: 10.1016/j.bpj.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR's function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E. coli membranes and synthetic liposomes. Compared with the monomers, the photocycle kinetics of PR oligomers is ∼2 and ∼4.5 times slower for transitions between the K and M and the M and N photointermediates, respectively, indicating that oligomerization significantly slows PR's rate of proton transport in liposomes. In contrast, the apparent pKa of the key proton acceptor residue D97 (pKaD97) of liposome-embedded PR persists at 6.2-6.6, regardless of cross-protomer modulation of D97, suggesting that the liposome environment helps maintain PR's functional activity at neutral pH. By comparison, when extracted directly from E. coli membranes into styrene-maleic acid lipid particles, the pKaD97 of monomer-enriched E50Q PR drastically increases to 8.9, implying that there is a very low active PR population at neutral pH to engage in PR's photocycle. These findings demonstrate that oligomerization impacts PR's photocycle kinetics, while lipid-based membrane mimetics strongly affect PR's active population via different mechanisms.
Collapse
Affiliation(s)
- Chung-Ta Han
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Khanh Dinh Quoc Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Maxwell W Berkow
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Sunyia Hussain
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Ahmad Kiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Maia Kinnebrew
- College of Creative Studies, Biology Department, University of California, Santa Barbara, Santa Barbara, California
| | - Matthew N Idso
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Naomi Baxter
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Evelyn Chang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Emily Aye
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Elsa Winslow
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Mohammad Rahman
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California.
| |
Collapse
|
3
|
Mahmoud DB, Bakr MM, Al-Karmalawy AA, Moatasim Y, El Taweel A, Mostafa A. Scrutinizing the Feasibility of Nonionic Surfactants to Form Isotropic Bicelles of Curcumin: a Potential Antiviral Candidate Against COVID-19. AAPS PharmSciTech 2021; 23:44. [PMID: 34966978 PMCID: PMC8716085 DOI: 10.1208/s12249-021-02197-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Investigating bicelles as an oral drug delivery system and exploiting their structural benefits can pave the way to formulate hydrophobic drugs and potentiate their activity. Herein, the ability of non-ionic surfactants (labrasol®, tween 80, cremophore EL and pluronic F127) to form curcumin loaded bicelles with phosphatidylcholine, utilizing a simple method, was investigated. Molecular docking was used to understand the mechanism of bicelles formation. The % transmittance and TEM exhibited bicelles formation with labrasol® and tween 80, while cremophor EL and pluronic F127 tended to form mixed micelles. The surfactant-based nanostructures significantly improved curcumin dissolution (99.2 ± 2.6% within 10 min in case of tween 80-based bicelles) compared to liposomes and curcumin suspension in non-sink conditions. The prepared formulations improved curcumin ex vivo permeation over liposomes and drug suspension. Further, the therapeutic antiviral activity of the formulated curcumin against SARS-CoV-2 was potentiated over drug suspension. Although both Labrasol® and tween 80 bicelles could form bicelles and enhance the oral delivery of curcumin when compared to liposomes and drug suspension, the mixed micelles formulations depicted superiority than bicelles formulations. Our findings provide promising formulations that can be utilized for further preclinical and clinical studies of curcumin as an antiviral therapy for COVID-19 patients. Graphical Abstract.
Collapse
Affiliation(s)
- Dina B Mahmoud
- Department of Pharmaceutics, Egyptian drug Authority (formerly known as National Organization for Drug Control and Research), Giza, Egypt.
- Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, 04317, Leipzig, Germany.
| | - Mohamed Mofreh Bakr
- Department of Pharmaceutics, Egyptian drug Authority (formerly known as National Organization for Drug Control and Research), Giza, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
4
|
Formulation of Bicelles Based on Lecithin-Nonionic Surfactant Mixtures. MATERIALS 2020; 13:ma13143066. [PMID: 32659968 PMCID: PMC7412056 DOI: 10.3390/ma13143066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/01/2023]
Abstract
Bicelles have been intensively studied for use as drug delivery carriers and in biological studies, but their preparation with low-cost materials and via a simple process would allow their use for other purposes as well. Herein, bicelles were prepared through a semi-spontaneous method using a mixture of hydrogenated soybean lecithin (SL) and a nonionic surfactant, polyoxyethylene cholesteryl ether (ChEO10), and then we investigated the effect of composition and temperature on the structure of bicelles, which is important to design tailored systems. As the fraction of ChEO10 (XC) was increased, a bimodal particle size distribution with a small particle size of several tens of nanometers and a large particle size of several hundred nanometers was obtained, and only small particles were observed when XC ≥ 0.6, suggesting the formation of significant structure transition (liposomes to bicelles). The small-angle neutron scattering (SANS) spectrum for these particles fitted a core-shell bicelle model, providing further evidence of bicelle formation. A transition from a monomodal to a bimodal size distribution occurred as the temperature was increased, with this transition taking place at lower temperatures when higher SL-ChEO10 concentrations were used. SANS showed that this temperature-dependent size change was reversible, suggesting the SL-ChEO10 bicelles were stable against temperature, hence making them suitable for several applications.
Collapse
|
5
|
Ganapathy S, Opdam L, Hontani Y, Frehan S, Chen Q, Hellingwerf KJ, de Groot HJ, Kennis JT, de Grip WJ. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183113. [DOI: 10.1016/j.bbamem.2019.183113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
|
6
|
Jawurek M, Dröden J, Peter B, Glaubitz C, Hauser K. Lipid-induced dynamics of photoreceptors monitored by time-resolved step-scan FTIR spectroscopy. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Aramaki K, Iwata C, Mata J, Maehara T, Aburano D, Sakanishi Y, Kitao K. One-step formulation of nonionic surfactant bicelles (NSBs) by a double-tailed polyglycerol-type nonionic surfactant. Phys Chem Chem Phys 2017; 19:23802-23808. [PMID: 28530285 DOI: 10.1039/c7cp02585h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bicelles are generally formed by phospholipid-based systems and are useful for various applications, such as nanocarriers or membrane protein crystallization. The same disc-like assemblies, nonionic surfactant bicelles (NSBs), can also be formed using nonionic amphiphiles, but this has not been reported extensively. We report a novel NSB system that employs the double-tailed nonionic amphiphile, polyglyceryl dialkyl ether (C12CmGn), which has two alkyl chains and a polyglyceryl group. A symmetric-tail molecule, C12C12G13.8, formed vesicles, whereas an asymmetric-tail molecule, C12C14G15.5, formed NSBs through a simple one-step process using ultrasonication. The 1 wt% aqueous solution of C12C14G15.5 was in a two-phase equilibrium of a lamellar phase and a water phase. Transparent dispersion was obtained through ultrasonication treatment. The size distribution in the dispersion was obtained by dynamic light scattering (DLS), resulting in a narrow distribution of around 20 nm in diameter. A negatively-stained transmission electron microscopy (TEM) image showed oblong and spherical shapes, which are typically observed in bicelle-forming systems. A small angle neutron scattering (SANS) measurement well proved bicelle formation by fitting a core-shell bicelle form factor model. The disc thickness and diameter were in agreement with the values obtained by DLS and TEM, respectively. A larger shell thickness at the rim part than at the flat disc part suggested that NSB aggregates have inhomogeneous molecular distribution. Similar to phospholipid systems, the bicelle-forming C12C14G15.5 system produced a defective lamellar phase formation at high surfactant concentrations, whereas a general lamellar phase was formed in the vesicle-forming C12C12G13.8 system.
Collapse
Affiliation(s)
- Kenji Aramaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogaya-ku, Yokohama 240-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Liebau J, Mäler L. Immersion Depths of Lipid Carbons in Bicelles Measured by Paramagnetic Relaxation Enhancement. J Phys Chem B 2017; 121:7660-7670. [DOI: 10.1021/acs.jpcb.7b05822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jobst Liebau
- Department of Biochemistry
and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry
and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Liebau J, Ye W, Mäler L. Characterization of fast-tumbling isotropic bicelles by PFG diffusion NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:395-404. [PMID: 26662467 DOI: 10.1002/mrc.4399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Small isotropic bicelles are versatile membrane mimetics, which, in contrast to micelles, provide a lipid bilayer and are at the same time suitable for solution-state NMR studies. The lipid composition of the bilayer is flexible allowing for incorporation of various head groups and acyl chain types. In bicelles, lipids are solubilized by detergents, which are localized in the rim of the disk-shaped lipid bilayer. Bicelles have been characterized by a broad array of biophysical methods, pulsed-field gradient NMR (PFG NMR) being one of them. PFG NMR can readily be used to measure diffusion coefficients of macromolecules. It is thus employed to characterize bicelle size and morphology. Even more importantly, PFG NMR can be used to study the degree of protein association to membranes. Here, we present the advances that have been made in producing small, fast-tumbling isotropic bicelles from a variety of lipids and detergents, together with insights on the morphology of such mixtures gained from PFG NMR. Furthermore, we review approaches to study protein-membrane interaction by PFG NMR. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jobst Liebau
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Weihua Ye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Li H, Sineshchekov OA, Wu G, Spudich JL. In Vitro Activity of a Purified Natural Anion Channelrhodopsin. J Biol Chem 2016; 291:25319-25325. [PMID: 27789708 DOI: 10.1074/jbc.c116.760041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/26/2016] [Indexed: 12/29/2022] Open
Abstract
Natural anion channelrhodopsins (ACRs) recently discovered in cryptophyte algae are the most active rhodopsin channels known. They are of interest both because of their unique natural function of light-gated chloride conductance and because of their unprecedented efficiency of membrane hyperpolarization for optogenetic neuron silencing. Light-induced currents of ACRs have been studied in HEK cells and neurons, but light-gated channel conductance of ACRs in vitro has not been demonstrated. Here we report light-induced chloride channel activity of a purified ACR protein reconstituted in large unilamellar vesicles (LUVs). EPR measurements establish that the channels are inserted uniformly "inside-out" with their cytoplasmic surface facing the medium of the LUV suspension. We show by time-resolved flash spectroscopy that the photochemical reaction cycle of a functional purified ACR from Guillardia theta (GtACR1) in LUVs exhibits similar spectral shifts, indicating similar photocycle intermediates as GtACR1 in detergent micelles. Furthermore, the photocycle rate is dependent on electric potential generated by chloride gradients in the LUVs in the same manner as in voltage-clamped animal cells. We confirm with this system that, in contrast to cation-conducting channelrhodopsins, opening of the channel occurs prior to deprotonation of the Schiff base. However, the photointermediate transitions in the LUVs exhibit faster kinetics. The ACR-incorporated LUVs provide a purified defined system amenable to EPR, optical and vibrational spectroscopy, and fluorescence resonance energy transfer measurements of structural changes of ACRs with the molecules in a demonstrably functional state.
Collapse
Affiliation(s)
- Hai Li
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030 and
| | - Oleg A Sineshchekov
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030 and
| | - Gang Wu
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030 and.,the Department of Internal Medicine, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030
| | - John L Spudich
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030 and
| |
Collapse
|
11
|
Fast-tumbling bicelles constructed from native Escherichia coli lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2097-2105. [DOI: 10.1016/j.bbamem.2016.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/20/2022]
|
12
|
Biner O, Schick T, Müller Y, von Ballmoos C. Delivery of membrane proteins into small and giant unilamellar vesicles by charge-mediated fusion. FEBS Lett 2016; 590:2051-62. [DOI: 10.1002/1873-3468.12233] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Olivier Biner
- Department of Chemistry and Biochemistry; University of Bern; Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Switzerland
| | - Thomas Schick
- Department of Chemistry and Biochemistry; University of Bern; Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Switzerland
| | - Yannic Müller
- Department of Chemistry and Biochemistry; University of Bern; Switzerland
| | | |
Collapse
|
13
|
Watanabe Y, Aramaki K, Kadomatsu Y, Tanaka K, Konno Y. Preparation of Bicelles Using the Semi-spontaneous Method. CHEM LETT 2016. [DOI: 10.1246/cl.160118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuki Watanabe
- Graduate School of Environment and Information Science, Yokohama National University
| | - Kenji Aramaki
- Graduate School of Environment and Information Science, Yokohama National University
| | | | - Ken Tanaka
- Research and Development Division, KOSÉ Corporation
| | | |
Collapse
|
14
|
Chen Q, van der Steen JB, Dekker HL, Ganapathy S, de Grip WJ, Hellingwerf KJ. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metab Eng 2016; 35:83-94. [PMID: 26869136 DOI: 10.1016/j.ymben.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 10(5) molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B van der Steen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|