1
|
Hardy BJ, Dubiel P, Bungay EL, Rudin M, Williams C, Arthur CJ, Guberman‐Pfeffer MJ, Sofia Oliveira A, Curnow P, Anderson JLR. Delineating redox cooperativity in water-soluble and membrane multiheme cytochromes through protein design. Protein Sci 2024; 33:e5113. [PMID: 38980168 PMCID: PMC11232281 DOI: 10.1002/pro.5113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Nature has evolved diverse electron transport proteins and multiprotein assemblies essential to the generation and transduction of biological energy. However, substantially modifying or adapting these proteins for user-defined applications or to gain fundamental mechanistic insight can be hindered by their inherent complexity. De novo protein design offers an attractive route to stripping away this confounding complexity, enabling us to probe the fundamental workings of these bioenergetic proteins and systems, while providing robust, modular platforms for constructing completely artificial electron-conducting circuitry. Here, we use a set of de novo designed mono-heme and di-heme soluble and membrane proteins to delineate the contributions of electrostatic micro-environments and dielectric properties of the surrounding protein medium on the inter-heme redox cooperativity that we have previously reported. Experimentally, we find that the two heme sites in both the water-soluble and membrane constructs have broadly equivalent redox potentials in isolation, in agreement with Poisson-Boltzmann Continuum Electrostatics calculations. BioDC, a Python program for the estimation of electron transfer energetics and kinetics within multiheme cytochromes, also predicts equivalent heme sites, and reports that burial within the low dielectric environment of the membrane strengthens heme-heme electrostatic coupling. We conclude that redox cooperativity in our diheme cytochromes is largely driven by heme electrostatic coupling and confirm that this effect is greatly strengthened by burial in the membrane. These results demonstrate that while our de novo proteins present minimalist, new-to-nature constructs, they enable the dissection and microscopic examination of processes fundamental to the function of vital, yet complex, bioenergetic assemblies.
Collapse
Affiliation(s)
| | | | | | - May Rudin
- School of BiochemistryUniversity of BristolBristolUK
| | | | | | | | | | - Paul Curnow
- School of BiochemistryUniversity of BristolBristolUK
| | | |
Collapse
|
2
|
A bound iron porphyrin is redox active in hybrid bacterial reaction centers modified to possess a four-helix bundle domain. Photochem Photobiol Sci 2021; 21:91-99. [PMID: 34850374 DOI: 10.1007/s43630-021-00142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
In this paper we report the design of hybrid reaction centers with a novel redox-active cofactor. Reaction centers perform the primary photochemistry of photosynthesis, namely the light-induced transfer of an electron from the bacteriochlorophyll dimer to a series of electron acceptors. Hybrid complexes were created by the fusion of an artificial four-helix bundle to the M-subunit of the reaction center. Despite the large modification, optical spectra show that the purified hybrid reaction centers assemble as active complexes that retain the characteristic cofactor absorption peaks and are capable of light-induced charge separation. The four-helix bundle could bind iron-protoporphyrin in either a reduced and oxidized state. After binding iron-protoporphyrin to the hybrid reaction centers, light excitation results in a new derivative signal with a maximum at 402 nm and minimum at 429 nm. This signal increases in amplitude with longer light durations and persists in the dark. No signal is observed when iron-protoporphyrin is added to reaction centers without the four-helix bundle domain or when a redox-inactive zinc-protoporphyrin is bound. The results are consistent with the signal arising from a new redox reaction, electron transfer from the iron-protoporphyrin to the oxidized bacteriochlorophyll dimer. These outcomes demonstrate the feasibility of binding porphyrins to the hybrid reaction centers to gain new light-driven functions.
Collapse
|
3
|
Yu J, Horsley JR, Abell AD. Unravelling electron transfer in peptide-cation complexes: a model for mimicking redox centres in proteins. Phys Chem Chem Phys 2020; 22:8409-8417. [DOI: 10.1039/d0cp00635a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We provide evidence that bound zinc promotes electron transfer in a peptide by changing the electronic properties of the peptide.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| |
Collapse
|
4
|
Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends Biochem Sci 2019; 44:1022-1040. [DOI: 10.1016/j.tibs.2019.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
|
5
|
Grayson KJ, Anderson JLR. Designed for life: biocompatible de novo designed proteins and components. J R Soc Interface 2019; 15:rsif.2018.0472. [PMID: 30158186 PMCID: PMC6127164 DOI: 10.1098/rsif.2018.0472] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
A principal goal of synthetic biology is the de novo design or redesign of biomolecular components. In addition to revealing fundamentally important information regarding natural biomolecular engineering and biochemistry, functional building blocks will ultimately be provided for applications including the manufacture of valuable products and therapeutics. To fully realize this ambitious goal, the designed components must be biocompatible, working in concert with natural biochemical processes and pathways, while not adversely affecting cellular function. For example, de novo protein design has provided us with a wide repertoire of structures and functions, including those that can be assembled and function in vivo. Here we discuss such biocompatible designs, as well as others that have the potential to become biocompatible, including non-protein molecules, and routes to achieving full biological integration.
Collapse
Affiliation(s)
- Katie J Grayson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK .,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
6
|
Muras V, Toulouse C, Fritz G, Steuber J. Respiratory Membrane Protein Complexes Convert Chemical Energy. Subcell Biochem 2019; 92:301-335. [PMID: 31214991 DOI: 10.1007/978-3-030-18768-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The invention of a biological membrane which is used as energy storage system to drive the metabolism of a primordial, unicellular organism represents a key event in the evolution of life. The innovative, underlying principle of this key event is respiration. In respiration, a lipid bilayer with insulating properties is chosen as the site for catalysis of an exergonic redox reaction converting substrates offered from the environment, using the liberated Gibbs free energy (ΔG) for the build-up of an electrochemical H+ (proton motive force, PMF) or Na+ gradient (sodium motive force, SMF) across the lipid bilayer. Very frequently , several redox reactions are performed in a consecutive manner, with the first reaction delivering a product which is used as substrate for the second redox reaction, resulting in a respiratory chain. From today's perspective, the (mostly) unicellular bacteria and archaea seem to be much simpler and less evolved when compared to multicellular eukaryotes. However, they are overwhelmingly complex with regard to the various respiratory chains which permit survival in very different habitats of our planet, utilizing a plethora of substances to drive metabolism. This includes nitrogen, sulfur and carbon compounds which are oxidized or reduced by specialized, respiratory enzymes of bacteria and archaea which lie at the heart of the geochemical N, S and C-cycles. This chapter gives an overview of general principles of microbial respiration considering thermodynamic aspects, chemical reactions and kinetic restraints. The respiratory chains of Escherichia coli and Vibrio cholerae are discussed as models for PMF- versus SMF-generating processes, respectively. We introduce main redox cofactors of microbial respiratory enzymes, and the concept of intra-and interelectron transfer. Since oxygen is an electron acceptor used by many respiratory chains, the formation and removal of toxic oxygen radicals is described. Promising directions of future research are respiratory enzymes as novel bacterial targets, and biotechnological applications relying on respiratory complexes.
Collapse
Affiliation(s)
- Valentin Muras
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Charlotte Toulouse
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| |
Collapse
|
7
|
Chong GW, Karbelkar AA, El-Naggar MY. Nature's conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion? Curr Opin Chem Biol 2018; 47:7-17. [PMID: 30015234 DOI: 10.1016/j.cbpa.2018.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
Microorganisms can acquire energy from the environment by extending their electron transport chains to external solid electron donors or acceptors. This process, known as extracellular electron transfer (EET), is now being heavily pursued for wiring microbes to electrodes in bioelectrochemical renewable energy technologies. Recent studies highlight the crucial role of multi-heme cytochromes in facilitating biotic-abiotic EET both for cellular electron export and uptake. Here we explore progress in understanding the range and function of these biological electron conduits in the context of fuel-to-electricity and electricity-to-bioproduct conversion. We also highlight emerging topics, including the role of multi-heme cytochromes in inter-species electron transfer and in inspiring the design and synthesis of a new generation of protein-based bioelectronic components.
Collapse
Affiliation(s)
- Grace W Chong
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Amruta A Karbelkar
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, USA
| | - Mohamed Y El-Naggar
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, USA; Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA.
| |
Collapse
|
8
|
Mancini JA, Sheehan M, Kodali G, Chow BY, Bryant DA, Dutton PL, Moser CC. De novo synthetic biliprotein design, assembly and excitation energy transfer. J R Soc Interface 2018; 15:20180021. [PMID: 29618529 PMCID: PMC5938588 DOI: 10.1098/rsif.2018.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022] Open
Abstract
Bilins are linear tetrapyrrole chromophores with a wide range of visible and near-visible light absorption and emission properties. These properties are tuned upon binding to natural proteins and exploited in photosynthetic light-harvesting and non-photosynthetic light-sensitive signalling. These pigmented proteins are now being manipulated to develop fluorescent experimental tools. To engineer the optical properties of bound bilins for specific applications more flexibly, we have used first principles of protein folding to design novel, stable and highly adaptable bilin-binding four-α-helix bundle protein frames, called maquettes, and explored the minimal requirements underlying covalent bilin ligation and conformational restriction responsible for the strong and variable absorption, fluorescence and excitation energy transfer of these proteins. Biliverdin, phycocyanobilin and phycoerythrobilin bind covalently to maquette Cys in vitro A blue-shifted tripyrrole formed from maquette-bound phycocyanobilin displays a quantum yield of 26%. Although unrelated in fold and sequence to natural phycobiliproteins, bilin lyases nevertheless interact with maquettes during co-expression in Escherichia coli to improve the efficiency of bilin binding and influence bilin structure. Bilins bind in vitro and in vivo to Cys residues placed in loops, towards the amino end or in the middle of helices but bind poorly at the carboxyl end of helices. Bilin-binding efficiency and fluorescence yield are improved by Arg and Asp residues adjacent to the ligating Cys on the same helix and by His residues on adjacent helices.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Sheehan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Hecht MH, Zarzhitsky S, Karas C, Chari S. Are natural proteins special? Can we do that? Curr Opin Struct Biol 2018; 48:124-132. [DOI: 10.1016/j.sbi.2017.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022]
|
10
|
Olson TL, Espiritu E, Edwardraja S, Canarie E, Flores M, Williams JC, Ghirlanda G, Allen JP. Biochemical and spectroscopic characterization of dinuclear Mn-sites in artificial four-helix bundle proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:945-954. [PMID: 28882760 DOI: 10.1016/j.bbabio.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023]
Abstract
To better understand metalloproteins with Mn-clusters, we have designed artificial four-helix bundles to have one, two, or three dinuclear metal centers able to bind Mn(II). Circular dichroism measurements showed that the Mn-proteins have substantial α-helix content, and analysis of electron paramagnetic resonance spectra is consistent with the designed number of bound Mn-clusters. The Mn-proteins were shown to catalyze the conversion of hydrogen peroxide into molecular oxygen. The loss of hydrogen peroxide was dependent upon the concentration of protein with bound Mn, with the proteins containing multiple Mn-clusters showing greater activity. Using an oxygen sensor, the oxygen concentration was found to increase with a rate up to 0.4μM/min, which was dependent upon the concentrations of hydrogen peroxide and the Mn-protein. In addition, the Mn-proteins were shown to serve as electron donors to bacterial reaction centers using optical spectroscopy. Similar binding of the Mn-proteins to reaction centers was observed with an average dissociation constant of 2.3μM. The Mn-proteins with three metal centers were more effective at this electron transfer reaction than the Mn-proteins with one or two metal centers. Thus, multiple Mn-clusters can be incorporated into four-helix bundles with the capability of performing catalysis and electron transfer to a natural protein.
Collapse
Affiliation(s)
- Tien L Olson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Eduardo Espiritu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Elizabeth Canarie
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - JoAnn C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
11
|
Mancini JA, Kodali G, Jiang J, Reddy KR, Lindsey JS, Bryant DA, Dutton PL, Moser CC. Multi-step excitation energy transfer engineered in genetic fusions of natural and synthetic light-harvesting proteins. J R Soc Interface 2017; 14:rsif.2016.0896. [PMID: 28179548 DOI: 10.1098/rsif.2016.0896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 11/12/2022] Open
Abstract
Synthetic proteins designed and constructed from first principles with minimal reference to the sequence of any natural protein have proven robust and extraordinarily adaptable for engineering a range of functions. Here for the first time we describe the expression and genetic fusion of a natural photosynthetic light-harvesting subunit with a synthetic protein designed for light energy capture and multi-step transfer. We demonstrate excitation energy transfer from the bilin of the CpcA subunit (phycocyanin α subunit) of the cyanobacterial photosynthetic light-harvesting phycobilisome to synthetic four-helix-bundle proteins accommodating sites that specifically bind a variety of selected photoactive tetrapyrroles positioned to enhance energy transfer by relay. The examination of combinations of different bilin, chlorin and bacteriochlorin cofactors has led to identification of the preconditions for directing energy from the bilin light-harvesting antenna into synthetic protein-cofactor constructs that can be customized for light-activated chemistry in the cell.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme. Nat Commun 2017; 8:358. [PMID: 28842561 PMCID: PMC5572459 DOI: 10.1038/s41467-017-00541-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2.
Collapse
|
13
|
Spieler V, Lühmann T. 67th Mosbacher Kolloquium: Protein Design: From First Principles to Biomedical Applications. Chembiochem 2016; 17:1297-300. [PMID: 27147583 DOI: 10.1002/cbic.201600256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Indexed: 11/11/2022]
Abstract
The 67th Mosbacher Kolloquium of the German Society for Biochemistry and Molecular Biology (GBM) with the topic "Protein Design-From First Principles to Biomedical Application" took place from March 31 to April 2 in Mosbach, Germany. Highlights of the colloquium are presented here.
Collapse
Affiliation(s)
- Valerie Spieler
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
14
|
Moser CC, Sheehan MM, Ennist NM, Kodali G, Bialas C, Englander MT, Discher BM, Dutton PL. De Novo Construction of Redox Active Proteins. Methods Enzymol 2016; 580:365-88. [PMID: 27586341 DOI: 10.1016/bs.mie.2016.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways.
Collapse
Affiliation(s)
- C C Moser
- University of Pennsylvania, Philadelphia, PA, United States
| | - M M Sheehan
- University of Pennsylvania, Philadelphia, PA, United States
| | - N M Ennist
- University of Pennsylvania, Philadelphia, PA, United States
| | - G Kodali
- University of Pennsylvania, Philadelphia, PA, United States
| | - C Bialas
- University of Pennsylvania, Philadelphia, PA, United States
| | - M T Englander
- University of Pennsylvania, Philadelphia, PA, United States
| | - B M Discher
- University of Pennsylvania, Philadelphia, PA, United States
| | - P L Dutton
- University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Goparaju G, Fry BA, Chobot SE, Wiedman G, Moser CC, Leslie Dutton P, Discher BM. First principles design of a core bioenergetic transmembrane electron-transfer protein. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:503-512. [PMID: 26672896 PMCID: PMC4846532 DOI: 10.1016/j.bbabio.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/14/2015] [Accepted: 12/01/2015] [Indexed: 12/26/2022]
Abstract
Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Geetha Goparaju
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryan A Fry
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E Chobot
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory Wiedman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bohdana M Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|