1
|
Alavi G, Engelbrecht V, Hemschemeier A, Happe T. The Alga Uronema belkae Has Two Structural Types of [FeFe]-Hydrogenases with Different Biochemical Properties. Int J Mol Sci 2023; 24:17311. [PMID: 38139142 PMCID: PMC10744039 DOI: 10.3390/ijms242417311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga's metabolism.
Collapse
Affiliation(s)
| | | | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| |
Collapse
|
2
|
Günzel A, Engelbrecht V, Happe T. Changing the tracks: screening for electron transfer proteins to support hydrogen production. J Biol Inorg Chem 2022; 27:631-640. [PMID: 36038787 PMCID: PMC9569306 DOI: 10.1007/s00775-022-01956-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
Ferredoxins are essential electron transferring proteins in organisms. Twelve plant-type ferredoxins in the green alga Chlamydomonas reinhardtii determine the fate of electrons, generated in multiple metabolic processes. The two hydrogenases HydA1 and HydA2 of. C. reinhardtii compete for electrons from the photosynthetic ferredoxin PetF, which is the first stromal mediator of the high-energy electrons derived from the absorption of light energy at the photosystems. While being involved in many chloroplast-located metabolic pathways, PetF shows the highest affinity for ferredoxin-NADP+ oxidoreductase (FNR), not for the hydrogenases. Aiming to identify other potential electron donors for the hydrogenases, we screened as yet uncharacterized ferredoxins Fdx7, 8, 10 and 11 for their capability to reduce the hydrogenases. Comparing the performance of the Fdx in presence and absence of competitor FNR, we show that Fdx7 has a higher affinity for HydA1 than for FNR. Additionally, we show that synthetic FeS-cluster-binding maquettes, which can be reduced by NADPH alone, can also be used to reduce the hydrogenases. Our findings pave the way for the creation of tailored electron donors to redirect electrons to enzymes of interest.
Collapse
Affiliation(s)
- Alexander Günzel
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Vera Engelbrecht
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
3
|
Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W. The catalytic cycle of [FeFe] hydrogenase: A tale of two sites. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214191] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Arizzi M, Morra S, Gilardi G, Pugliese M, Gullino ML, Valetti F. Improving sustainable hydrogen production from green waste: [FeFe]-hydrogenases quantitative gene expression RT-qPCR analysis in presence of autochthonous consortia. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:182. [PMID: 34530890 PMCID: PMC8444407 DOI: 10.1186/s13068-021-02028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/28/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Bio-hydrogen production via dark fermentation of low-value waste is a potent and simple mean of recovering energy, maximising the harvesting of reducing equivalents to produce the cleanest fuel amongst renewables. Following several position papers from companies and public bodies, the hydrogen economy is regaining interest, especially in combination with circular economy and the environmental benefits of short local supply chains, aiming at zero net emission of greenhouse gases (GHG). The biomasses attracting the largest interest are agricultural and urban green wastes (pruning of trees, collected leaves, grass clippings from public parks and boulevards), which are usually employed in compost production, with some concerns over the GHG emission during the process. Here, an alternative application of green wastes, low-value compost and intermediate products (partially composted but unsuitable for completing the process) is studied, pointing at the autochthonous microbial consortium as an already selected source of implementation for biomass degradation and hydrogen production. The biocatalysts investigated as mainly relevant for hydrogen production were the [FeFe]-hydrogenases expressed in Clostridia, given their very high turnover rates. RESULTS Bio-hydrogen accumulation was related to the modulation of gene expression of multiple [FeFe]-hydrogenases from two strains (Clostridium beijerinckii AM2 and Clostridium tyrobutyricum AM6) isolated from the same waste. Reverse Transcriptase quantitative PCR (RT-qPCR) was applied over a period of 288 h and the RT-qPCR results showed that C. beijerinckii AM2 prevailed over C. tyrobutyricum AM6 and a high expression modulation of the 6 different [FeFe]-hydrogenase genes of C. beijerinckii in the first 23 h was observed, sustaining cumulative hydrogen production of 0.6 to 1.2 ml H2/g VS (volatile solids). These results are promising in terms of hydrogen yields, given that no pre-treatment was applied, and suggested a complex cellular regulation, linking the performance of dark fermentation with key functional genes involved in bio-H2 production in presence of the autochthonous consortium, with different roles, time, and mode of expression of the involved hydrogenases. CONCLUSIONS An applicative outcome of the hydrogenases genes quantitative expression analysis can be foreseen in optimising (on the basis of the acquired functional data) hydrogen production from a nutrient-poor green waste and/or low added value compost, in a perspective of circular bioeconomy.
Collapse
Affiliation(s)
- M Arizzi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Acea Engineering Laboratories Research Innovation SpA, Roma, Italy
| | - S Morra
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - G Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - M Pugliese
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - M L Gullino
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - F Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
5
|
|
6
|
Petrova EV, Kukarskikh GP, Krendeleva TE, Antal TK. The Mechanisms and Role of Photosynthetic Hydrogen Production by Green Microalgae. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
8
|
Esselborn J, Kertess L, Apfel UP, Hofmann E, Happe T. Loss of Specific Active-Site Iron Atoms in Oxygen-Exposed [FeFe]-Hydrogenase Determined by Detailed X-ray Structure Analyses. J Am Chem Soc 2019; 141:17721-17728. [PMID: 31609603 DOI: 10.1021/jacs.9b07808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The [FeFe]-hydrogenases catalyze the uptake and evolution of hydrogen with unmatched speed at low overpotential. However, oxygen induces the degradation of the unique [6Fe-6S] cofactor within the active site, termed the H-cluster. We used X-ray structural analyses to determine possible modes of irreversible oxygen-driven inactivation. To this end, we exposed crystals of the [FeFe]-hydrogenase CpI from Clostridium pasteurianum to oxygen and quantitatively investigated the effects on the H-cluster structure over several time points using multiple data sets, while correlating it to decreases in enzyme activity. Our results reveal the loss of specific Fe atoms from both the diiron (2FeH) and the [4Fe-4S] subcluster (4FeH) of the H-cluster. Within the 2FeH, the Fe atom more distal to the 4FeH is strikingly more affected than the more proximal Fe atom. The 4FeH interconverts to a [2Fe-2S] cluster in parts of the population of active CpIADT, but not in crystals of the inactive apoCpI initially lacking the 2FeH. We thus propose two parallel processes: dissociation of the distal Fe atom and 4FeH interconversion. Both pathways appear to play major roles in the oxidative damage of [FeFe]-hydrogenases under electron-donor deprived conditions probed by our experimental setup.
Collapse
|
9
|
Land H, Ceccaldi P, Mészáros LS, Lorenzi M, Redman HJ, Senger M, Stripp ST, Berggren G. Discovery of novel [FeFe]-hydrogenases for biocatalytic H 2-production. Chem Sci 2019; 10:9941-9948. [PMID: 32055351 PMCID: PMC6984386 DOI: 10.1039/c9sc03717a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
A semi-synthetic screening method for mining the biodiversity of [FeFe]-hydrogenases, expanding the toolbox for biocatalytic H2-gas production.
A new screening method for [FeFe]-hydrogenases is described, circumventing the need for specialized expression conditions as well as protein purification for initial characterization. [FeFe]-hydrogenases catalyze the formation and oxidation of molecular hydrogen at rates exceeding 103 s–1, making them highly promising for biotechnological applications. However, the discovery of novel [FeFe]-hydrogenases is slow due to their oxygen sensitivity and dependency on a structurally unique cofactor, complicating protein expression and purification. Consequently, only a very limited number have been characterized, hampering their implementation. With the purpose of increasing the throughput of [FeFe]-hydrogenase discovery, we have developed a screening method that allows for rapid identification of novel [FeFe]-hydrogenases as well as their characterization with regards to activity (activity assays and protein film electrochemistry) and spectroscopic properties (electron paramagnetic resonance and Fourier transform infrared spectroscopy). The method is based on in vivo artificial maturation of [FeFe]-hydrogenases in Escherichia coli and all procedures are performed on either whole cells or non-purified cell lysates, thereby circumventing extensive protein purification. The screening was applied on eight putative [FeFe]-hydrogenases originating from different structural sub-classes and resulted in the discovery of two new active [FeFe]-hydrogenases. The [FeFe]-hydrogenase from Solobacterium moorei shows high H2-gas production activity, while the enzyme from Thermoanaerobacter mathranii represents a hitherto uncharacterized [FeFe]-hydrogenase sub-class. This latter enzyme is a putative sensory hydrogenase and our in vivo spectroscopy study reveals distinct differences compared to the well established H2 producing HydA1 hydrogenase from Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Henrik Land
- Molecular Biomimetics , Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , Uppsala , SE-75120 , Sweden .
| | - Pierre Ceccaldi
- Molecular Biomimetics , Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , Uppsala , SE-75120 , Sweden .
| | - Lívia S Mészáros
- Molecular Biomimetics , Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , Uppsala , SE-75120 , Sweden .
| | - Marco Lorenzi
- Molecular Biomimetics , Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , Uppsala , SE-75120 , Sweden .
| | - Holly J Redman
- Molecular Biomimetics , Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , Uppsala , SE-75120 , Sweden .
| | - Moritz Senger
- Institute of Experimental Physics, Experimental Molecular Biophysics , Freie Universität Berlin , Arnimallee 14 , Berlin , DE-14195 , Germany
| | - Sven T Stripp
- Institute of Experimental Physics, Experimental Molecular Biophysics , Freie Universität Berlin , Arnimallee 14 , Berlin , DE-14195 , Germany
| | - Gustav Berggren
- Molecular Biomimetics , Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , Uppsala , SE-75120 , Sweden .
| |
Collapse
|
10
|
|