1
|
Soares R, Costa NL, Paquete CM, Andreini C, Louro RO. A new paradigm of multiheme cytochrome evolution by grafting and pruning protein modules. Mol Biol Evol 2022; 39:6609985. [PMID: 35714268 PMCID: PMC9250108 DOI: 10.1093/molbev/msac139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiheme cytochromes play key roles in diverse biogeochemical cycles, but understanding the origin and evolution of these proteins is a challenge due to their ancient origin and complex structure. Up until now, the evolution of multiheme cytochromes composed by multiple redox modules in a single polypeptide chain was proposed to occur by gene fusion events. In this context, the pentaheme nitrite reductase NrfA and the tetraheme cytochrome c554 were previously proposed to be at the origin of the extant octa- and nonaheme cytochrome c involved in metabolic pathways that contribute to the nitrogen, sulfur, and iron biogeochemical cycles by a gene fusion event. Here, we combine structural and character-based phylogenetic analysis with an unbiased root placement method to refine the evolutionary relationships between these multiheme cytochromes. The evidence show that NrfA and cytochrome c554 belong to different clades, which suggests that these two multiheme cytochromes are products of truncation of ancestral octaheme cytochromes related to extant octaheme nitrite reductase and MccA, respectively. From our phylogenetic analysis, the last common ancestor is predicted to be an octaheme cytochrome with nitrite reduction ability. Evolution from this octaheme framework led to the great diversity of extant multiheme cytochromes analyzed here by pruning and grafting of protein modules and hemes. By shedding light into the evolution of multiheme cytochromes that intervene in different biogeochemical cycles, this work contributes to our understanding about the interplay between biology and geochemistry across large time scales in the history of Earth.
Collapse
Affiliation(s)
- Ricardo Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal.,Instituto Nacional de Investigação Agrária e Veterinária, Portugal
| | - Nazua L Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| | - Claudia Andreini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
2
|
Jiang N, Feng Y, Huang Q, Liu X, Guo Y, Yang Z, Peng C, Li S, Hao L. Effect of Environmental pH on Mineralization of Anaerobic Iron-Oxidizing Bacteria. Front Microbiol 2022; 13:885098. [PMID: 35633702 PMCID: PMC9134017 DOI: 10.3389/fmicb.2022.885098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Freshwater lakes are often polluted with various heavy metals in the Anthropocene. The iron-oxidizing microorganisms and their mineralized products can coprecipitate with many heavy metals, including Al, Zn, Cu, Cd, and Cr. As such, microbial iron oxidation can exert a profound impact on environmental remediation. The environmental pH is a key determinant regulating microbial growth and mineralization and then influences the structure of the final mineralized products of anaerobic iron-oxidizing bacteria. Freshwater lakes, in general, are neutral-pH environments. Understanding the effects of varying pH on the mineralization of iron-oxidizing bacteria under neutrophilic conditions could aid in finding out the optimal pH values that promote the coprecipitation of heavy metals. Here, two typical neutrophilic Fe(II)-oxidizing bacteria, the nitrate-reducing Acidovorax sp. strain BoFeN1 and the anoxygenic phototrophic Rhodobacter ferrooxidans strain SW2, were selected for studying how their growth and mineralization response to slight changes in circumneutral pH. By employing focused ion beam/scanning electron microscopy (FIB–SEM) and transmission electron microscopy (TEM), we examined the interplay between pH changes and anaerobic iron-oxidizing bacteria and observed that pH can significantly impact the microbial mineralization process and vice versa. Further, pH-dependent changes in the structure of mineralized products of bacterial iron oxidation were observed. Our study could provide mechanical insights into how to manipulate microbial iron oxidation for facilitating remediation of heavy metals in the environment.
Collapse
Affiliation(s)
- Na Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- Institute of Geochemistry, University of Chinese Academy of Sciences, Beijing, China
- Minzu Normal University of Xingyi, Xingyi, China
| | - Yiqing Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- Institute of Geochemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- Institute of Geochemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Yuan Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Zhen Yang
- College of Urban and Environmental Science, Peking University, Beijing, China
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Shun Li
- Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- Chinese Academy of Sciences (CAS) Center for Excellence in Quaternary Science and Global Change, Xi'an, China
- *Correspondence: Likai Hao
| |
Collapse
|
3
|
Garber AI, Cohen AB, Nealson KH, Ramírez GA, Barco RA, Enzingmüller-Bleyl TC, Gehringer MM, Merino N. Metagenomic Insights Into the Microbial Iron Cycle of Subseafloor Habitats. Front Microbiol 2021; 12:667944. [PMID: 34539592 PMCID: PMC8446621 DOI: 10.3389/fmicb.2021.667944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial iron cycling influences the flux of major nutrients in the environment (e.g., through the adsorptive capacity of iron oxides) and includes biotically induced iron oxidation and reduction processes. The ecological extent of microbial iron cycling is not well understood, even with increased sequencing efforts, in part due to limitations in gene annotation pipelines and limitations in experimental studies linking phenotype to genotype. This is particularly true for the marine subseafloor, which remains undersampled, but represents the largest contiguous habitat on Earth. To address this limitation, we used FeGenie, a database and bioinformatics tool that identifies microbial iron cycling genes and enables the development of testable hypotheses on the biogeochemical cycling of iron. Herein, we survey the microbial iron cycle in diverse subseafloor habitats, including sediment-buried crustal aquifers, as well as surficial and deep sediments. We inferred the genetic potential for iron redox cycling in 32 of the 46 metagenomes included in our analysis, demonstrating the prevalence of these activities across underexplored subseafloor ecosystems. We show that while some processes (e.g., iron uptake and storage, siderophore transport potential, and iron gene regulation) are near-universal, others (e.g., iron reduction/oxidation, siderophore synthesis, and magnetosome formation) are dependent on local redox and nutrient status. Additionally, we detected niche-specific differences in strategies used for dissimilatory iron reduction, suggesting that geochemical constraints likely play an important role in dictating the dominant mechanisms for iron cycling. Overall, our survey advances the known distribution, magnitude, and potential ecological impact of microbe-mediated iron cycling and utilization in sub-benthic ecosystems.
Collapse
Affiliation(s)
- Arkadiy I Garber
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Ashley B Cohen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Gustavo A Ramírez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Michelle M Gehringer
- Department of Microbiology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Nancy Merino
- Biosciences & Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
4
|
Gupta D, Guzman MS, Bose A. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. ACTA ACUST UNITED AC 2020; 47:863-876. [DOI: 10.1007/s10295-020-02309-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Abstract
Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Dinesh Gupta
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| | - Michael S Guzman
- grid.250008.f 0000 0001 2160 9702 Biosciences and Biotechnology Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA USA
| | - Arpita Bose
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| |
Collapse
|
5
|
Peng C, Bryce C, Sundman A, Kappler A. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria. Appl Environ Microbiol 2019; 85:e02826-18. [PMID: 30796062 PMCID: PMC6450027 DOI: 10.1128/aem.02826-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/14/2019] [Indexed: 11/20/2022] Open
Abstract
Fe-organic matter (Fe-OM) complexes are abundant in the environment and, due to their mobility, reactivity, and bioavailability, play a significant role in the biogeochemical Fe cycle. In photic zones of aquatic environments, Fe-OM complexes can potentially be reduced and oxidized, and thus cycled, by light-dependent processes, including abiotic photoreduction of Fe(III)-OM complexes and microbial oxidation of Fe(II)-OM complexes, by anoxygenic phototrophic bacteria. This could lead to a cryptic iron cycle in which continuous oxidation and rereduction of Fe could result in a low and steady-state Fe(II) concentration despite rapid Fe turnover. However, the coupling of these processes has never been demonstrated experimentally. In this study, we grew a model anoxygenic phototrophic Fe(II) oxidizer, Rhodobacter ferrooxidans SW2, with either citrate, Fe(II)-citrate, or Fe(III)-citrate. We found that strain SW2 was capable of reoxidizing Fe(II)-citrate produced by photochemical reduction of Fe(III)-citrate, which kept the dissolved Fe(II)-citrate concentration at low (<10 μM) and stable concentrations, with a concomitant increase in cell numbers. Cell suspension incubations with strain SW2 showed that it can also oxidize Fe(II)-EDTA, Fe(II)-humic acid, and Fe(II)-fulvic acid complexes. This work demonstrates the potential for active cryptic Fe cycling in the photic zone of anoxic aquatic environments, despite low measurable Fe(II) concentrations which are controlled by the rate of microbial Fe(II) oxidation and the identity of the Fe-OM complexes.IMPORTANCE Iron cycling, including reduction of Fe(III) and oxidation of Fe(II), involves the formation, transformation, and dissolution of minerals and dissolved iron-organic matter compounds. It has been shown previously that Fe can be cycled so rapidly that no measurable changes in Fe(II) and Fe(III) concentrations occur, leading to a so-called cryptic cycle. Cryptic Fe cycles have been shown to be driven either abiotically by a combination of photochemical reduction of Fe(III)-OM complexes and reoxidation of Fe(II) by O2, or microbially by a combination of Fe(III)-reducing and Fe(II)-oxidizing bacteria. Our study demonstrates a new type of light-driven cryptic Fe cycle that is relevant for the photic zone of aquatic habitats involving abiotic photochemical reduction of Fe(III)-OM complexes and microbial phototrophic Fe(II) oxidation. This new type of cryptic Fe cycle has important implications for biogeochemical cycling of iron, carbon, nutrients, and heavy metals and can also influence the composition and activity of microbial communities.
Collapse
Affiliation(s)
- Chao Peng
- Geomicrobiology Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Casey Bryce
- Geomicrobiology Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Anneli Sundman
- Geomicrobiology Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Bryce C, Blackwell N, Schmidt C, Otte J, Huang YM, Kleindienst S, Tomaszewski E, Schad M, Warter V, Peng C, Byrne JM, Kappler A. Microbial anaerobic Fe(II) oxidation - Ecology, mechanisms and environmental implications. Environ Microbiol 2018; 20:3462-3483. [DOI: 10.1111/1462-2920.14328] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Casey Bryce
- Geomicrobiology; University of Tübingen; Tübingen Germany
| | - Nia Blackwell
- Geomicrobiology; University of Tübingen; Tübingen Germany
| | | | - Julia Otte
- Geomicrobiology; University of Tübingen; Tübingen Germany
| | - Yu-Ming Huang
- Geomicrobiology; University of Tübingen; Tübingen Germany
| | | | | | - Manuel Schad
- Geomicrobiology; University of Tübingen; Tübingen Germany
| | - Viola Warter
- Geomicrobiology; University of Tübingen; Tübingen Germany
| | - Chao Peng
- Geomicrobiology; University of Tübingen; Tübingen Germany
| | - James M. Byrne
- Geomicrobiology; University of Tübingen; Tübingen Germany
| | - Andreas Kappler
- Geomicrobiology; University of Tübingen; Tübingen Germany
- Center for Geomicrobiology, Department of Bioscience; Aarhus University; Aarhus Denmark
| |
Collapse
|
7
|
Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation. Appl Environ Microbiol 2018; 84:AEM.01166-18. [PMID: 29915106 DOI: 10.1128/aem.01166-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
The oxidation of Fe(II) by anoxygenic photosynthetic bacteria was likely a key contributor to Earth's biosphere prior to the evolution of oxygenic photosynthesis and is still found in a diverse range of modern environments. All known phototrophic Fe(II) oxidizers can utilize a wide range of substrates, thus making them very metabolically flexible. However, the underlying adaptations required to oxidize Fe(II), a potential stressor, are not completely understood. We used a combination of quantitative proteomics and cryogenic transmission electron microscopy (cryo-TEM) to compare cells of Rhodopseudomonas palustris TIE-1 grown photoautotrophically with Fe(II) or H2 and photoheterotrophically with acetate. We observed unique proteome profiles for each condition, with differences primarily driven by carbon source. However, these differences were not related to carbon fixation but to growth and light harvesting processes, such as pigment synthesis. Cryo-TEM showed stunted development of photosynthetic membranes in photoautotrophic cultures. Growth on Fe(II) was characterized by a response typical of iron homeostasis, which included an increased abundance of proteins required for metal efflux (particularly copper) and decreased abundance of iron import proteins, including siderophore receptors, with no evidence of further stressors, such as oxidative damage. This study suggests that the main challenge facing anoxygenic phototrophic Fe(II) oxidizers comes from growth limitations imposed by autotrophy, and, once this challenge is overcome, iron stress can be mitigated using iron management mechanisms common to diverse bacteria (e.g., by control of iron influx and efflux).IMPORTANCE The cycling of iron between redox states leads to the precipitation and dissolution of minerals, which can in turn impact other major biogeochemical cycles, such as those of carbon, nitrogen, phosphorus and sulfur. Anoxygenic phototrophs are one of the few drivers of Fe(II) oxidation in anoxic environments and are thought to contribute significantly to iron cycling in both modern and ancient environments. These organisms thrive at high Fe(II) concentrations, yet the adaptations required to tolerate the stresses associated with this are unclear. Despite the general consensus that high Fe(II) concentrations pose numerous stresses on these organisms, our study of the large-scale proteome response of a model anoxygenic phototroph to Fe(II) oxidation demonstrates that common iron homeostasis strategies are adequate to manage this. The bulk of the proteome response is not driven by adaptations to Fe(II) stress but to adaptations required to utilize an inorganic carbon source. Such a global overview of the adaptation of these organisms to Fe(II) oxidation provides valuable insights into the physiology of these biogeochemically important organisms and suggests that Fe(II) oxidation may not pose as many challenges to anoxygenic phototrophs as previously thought.
Collapse
|