1
|
Andreou C, Tselios C, Ioannou A, Varotsis C. Probing the Fucoxanthin-Chlorophyll a/ c-Binding Proteins (FCPs) of the Marine Diatom Fragilariopsis sp. by Resonance Raman Spectroscopy. J Phys Chem B 2023; 127:9014-9020. [PMID: 37819729 PMCID: PMC10614187 DOI: 10.1021/acs.jpcb.3c04346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
We report resonance Raman spectra of the light-harvesting fucoxanthin-chlorophyll a/c-binding proteins (FCPs) of marine diatom Fragilariopsis sp. The Raman shifts in the 15N-isotope-enriched diatom provide the first spectroscopic evidence for the characterization of the Ca-N marker bands and, thus, of the penta- and hexacoordinated states of chlorophylls a/c in the FCPs. Under 405 and 442 nm Raman excitations, all of the marker bands of Chl a/c are observed and the isotope-based assignments provide new information concerning the structure of Chls a/c in the FCPs and their interactions with the protein environment. Therefore, the Raman spectrum at 405 nm originates from the π-π* transitions of Chl a/c and not from a different, non π-π* electronic transition, as previously reported (BBA Bioenergetics, 2010, 1797, 1647-1656). Based on the 15N isotope shifts of the Ca-N and in conjunction with other marker bands, two distinct conformations of five- and six-coordinated Chl a and Chl c are observed. In addition, two keto carbonyls were observed at 1679 (strong H-bonded) and 1691 cm-1 (weak H-bonded) in both the 405 and 442 nm Raman spectra, respectively. Collectively, the results provide solid evidence of the nature of the vibrational modes of the active Chl a/c photosynthetic pigments in the FCPs.
Collapse
Affiliation(s)
- Charalampos Andreou
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Str., Lemesos 3603, Cyprus
| | - Charalampos Tselios
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Str., Lemesos 3603, Cyprus
| | - Aristos Ioannou
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Str., Lemesos 3603, Cyprus
| | - Constantinos Varotsis
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Str., Lemesos 3603, Cyprus
| |
Collapse
|
2
|
Shen JR. Structure, Function, and Variations of the Photosystem I-Antenna Supercomplex from Different Photosynthetic Organisms. Subcell Biochem 2022; 99:351-377. [PMID: 36151382 DOI: 10.1007/978-3-031-00793-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photosystem I (PSI) is a protein complex functioning in light-induced charge separation, electron transfer, and reduction reactions of ferredoxin in photosynthesis, which finally results in the reduction of NAD(P)- to NAD(P)H required for the fixation of carbon dioxide. In eukaryotic algae, PSI is associated with light-harvesting complex I (LHCI) subunits, forming a PSI-LHCI supercomplex. LHCI harvests and transfers light energy to the PSI core, where charge separation and electron transfer reactions occur. During the course of evolution, the number and sequences of protein subunits and the pigments they bind in LHCI change dramatically depending on the species of organisms, which is a result of adaptation of organisms to various light environments. In this chapter, I will describe the structure of various PSI-LHCI supercomplexes from different organisms solved so far either by X-ray crystallography or by cryo-electron microscopy, with emphasis on the differences in the number, structures, and association patterns of LHCI subunits associated with the PSI core found in different organisms.
Collapse
Affiliation(s)
- Jian-Ren Shen
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Kumazawa M, Nishide H, Nagao R, Inoue-Kashino N, Shen JR, Nakano T, Uchiyama I, Kashino Y, Ifuku K. Molecular phylogeny of fucoxanthin-chlorophyll a/c proteins from Chaetoceros gracilis and Lhcq/Lhcf diversity. PHYSIOLOGIA PLANTARUM 2022; 174:e13598. [PMID: 34792189 DOI: 10.1111/ppl.13598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
Diatoms adapt to various aquatic light environments and play major roles in the global carbon cycle using their unique light-harvesting system, i.e. fucoxanthin chlorophyll a/c binding proteins (FCPs). Structural analyses of photosystem II (PSII)-FCPII and photosystem I (PSI)-FCPI complexes from the diatom Chaetoceros gracilis have revealed the localization and interactions of many FCPs; however, the entire set of FCPs has not been characterized. Here, we identify 46 FCPs in the newly assembled genome and transcriptome of C. gracilis. Phylogenetic analyses suggest that these FCPs can be classified into five subfamilies: Lhcr, Lhcf, Lhcx, Lhcz, and the novel Lhcq, in addition to a distinct type of Lhcr, CgLhcr9. The FCPs in Lhcr, including CgLhcr9 and some Lhcqs, have orthologous proteins in other diatoms, particularly those found in the PSI-FCPI structure. By contrast, the Lhcf subfamily, some of which were found in the PSII-FCPII complex, seems to be diversified in each diatom species, and the number of Lhcqs differs among species, indicating that their diversification may contribute to species-specific adaptations to light. Further phylogenetic analyses of FCPs/light-harvesting complex (LHC) proteins using genome data and assembled transcriptomes of other diatoms and microalgae in public databases suggest that our proposed classification of FCPs is common among various red-lineage algae derived from secondary endosymbiosis of red algae, including Haptophyta. These results provide insights into the loss and gain of FCP/LHC subfamilies during the evolutionary history of the red algal lineage.
Collapse
Affiliation(s)
- Minoru Kumazawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroyo Nishide
- National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ikuo Uchiyama
- National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Yasuhiro Kashino
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Tselios C, Varotsis C. Evidence for reversible light-dependent transitions in the photosynthetic pigments of diatoms. RSC Adv 2022; 12:31555-31563. [PMID: 36380945 PMCID: PMC9631684 DOI: 10.1039/d2ra05284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Marine diatoms contribute to oxygenic photosynthesis and carbon fixation and handle large changes under variable light intensity on a regular basis. The unique light-harvesting apparatus of diatoms are the fucoxanthin–chlorophyll a/c-binding proteins (FCPs). Here, we show the enhancement of chlorophyll a/c (Chl a/c), fucoxanthin (Fx), and diadinoxanthin (Dd) marker bands in the Raman spectra of the centric diatom T. pseudonana, which allows distinction of the pigment content in the cells grown under low- (LL) and high-light (HL) intensity at room temperature. Reversible LL–HL dependent conformations of Chl c, characteristic of two conformations of the porphyrin macrocycle, and the presence of five- and six-coordinated Chl a/c with weak axial ligands are observed in the Raman data. Under HL the energy transfer from Chl c to Chl a is reduced and that from the red-shifted Fxs is minimal. Therefore, Chl c and the blue-shifted Fxs are the only contributors to the energy transfer pathways under HL and the blue- to red-shifted Fxs energy transfer pathway characteristic of the LL is inactive. The results indicate that T. pseudonana can redirect its function from light harvesting to energy-quenching state, and reversibly to light-harvesting upon subsequent illumination to LL by reproducing the red-shifted Fxs and decrease the number of Dds. The LL to HL reversible transitions are accompanied by structural modifications of Chl a/c and the lack of the red-shifted Fxs. A reversible light-intensity behavior of Dds and Fxs composition in the cells of T. pseudonana. The observed LL to HL reversible transitions are accompanied by structural modifications of Chls a/c and the lack of the red-shifted Fxs.![]()
Collapse
Affiliation(s)
- Charalampos Tselios
- Cyprus University of Technology, Department of Chemical Engineering, Lemesos, Cyprus
| | - Constantinos Varotsis
- Cyprus University of Technology, Department of Chemical Engineering, Lemesos, Cyprus
| |
Collapse
|
5
|
Nagao R, Yokono M, Kato KH, Ueno Y, Shen JR, Akimoto S. High-light modification of excitation-energy-relaxation processes in the green flagellate Euglena gracilis. PHOTOSYNTHESIS RESEARCH 2021; 149:303-311. [PMID: 34037905 DOI: 10.1007/s11120-021-00849-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic organisms finely tune their photosynthetic machinery including pigment compositions and antenna systems to adapt to various light environments. However, it is poorly understood how the photosynthetic machinery in the green flagellate Euglena gracilis is modified under high-light conditions. In this study, we examined high-light modification of excitation-energy-relaxation processes in Euglena cells. Oxygen-evolving activity in the cells incubated at 300 µmol photons m-2 s-1 (HL cells) cannot be detected, reflecting severe photodamage to photosystem II (PSII) in vivo. Pigment compositions in the HL cells showed relative increases in 9'-cis-neoxanthin, diadinoxanthin, and chlorophyll b compared with the cells incubated at 30 µmol photons m-2 s-1 (LL cells). Absolute fluorescence spectra at 77 K exhibit smaller intensities of the PSII and photosystem I (PSI) fluorescence in the HL cells than in the LL cells. Absolute fluorescence decay-associated spectra at 77 K of the HL cells indicate suppression of excitation-energy transfer from light-harvesting complexes (LHCs) to both PSI and PSII with the time constant of 40 ps. Rapid energy quenching in LHCs and PSII in the HL cells is distinctly observed by averaged Chl-fluorescence lifetimes. These findings suggest that Euglena modifies excitation-energy-relaxation processes in addition to pigment compositions to deal with excess energy. These results provide insights into the photoprotection strategies of this alga under high-light conditions.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido, 060-0819, Japan
| | - Ka-Ho Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
| |
Collapse
|
6
|
Akimoto S, Ueno Y, Yokono M, Shen JR, Nagao R. Adaptation of light-harvesting and energy-transfer processes of a diatom Chaetoceros gracilis to different light qualities. PHOTOSYNTHESIS RESEARCH 2020; 146:87-93. [PMID: 31970552 DOI: 10.1007/s11120-020-00713-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Diatoms are a major group of microalgae in marine and freshwater environments. To utilize the light energy in blue to green region, diatoms possess unique antenna pigment-protein complexes, fucoxanthin chlorophyll a/c-binding proteins (FCPs). Depending on light qualities and quantities, diatoms form FCPs with different energies: normal-type and red-shifted FCPs. In the present study, we examined changes in light-harvesting and energy-transfer processes of a diatom Chaetoceros gracilis cells grown using white- and single-colored light-emitting diodes (LEDs), by means of time-resolved fluorescence spectroscopy. The blue LED, which is harvested by FCPs, modified energy transfer involving CP47, and suppressed energy transfer to PSI. Under the red-LED conditions, which is absorbed by both FCPs and PSs, energy transfer to PSI was enhanced, and the red-shifted FCP appeared. The red-shifted FCP was also recognized under the green- and yellow-LEDs, suggesting that lack of the shorter-wavelength light induces the red-shifted FCP. Functions of the red-shifted FCPs are discussed.
Collapse
Affiliation(s)
- Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Makio Yokono
- Innovation Center, Nippon Flour Mills Co., Ltd, Atsugi, 243-0041, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
7
|
Nagao R, Ueno Y, Akimoto S, Shen JR. Effects of CO 2 and temperature on photosynthetic performance in the diatom Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2020; 146:189-195. [PMID: 32114648 DOI: 10.1007/s11120-020-00729-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
CO2 concentration and temperature for growth of photosynthetic organisms are two important factors to ensure better photosynthetic performance. In this study, we investigated the effects of CO2 concentration and temperature on the photosynthetic performance in a marine centric diatom Chaetoceros gracilis. Cells were grown under four different conditions, namely, at 25 °C with air bubbling, at 25 °C with a supplementation of 3% CO2, at 30 °C with air bubbling, and at 30 °C with the CO2 supplementation. It was found that the growth rate of cells at 30 °C with the CO2 supplementation is faster than those at other three conditions. The pigment compositions of cells grown under the different conditions are altered, and fluorescence spectra measured at 77 K also showed different peak positions. A novel fucoxanthin chlorophyll a/c-binding protein complex is observed in the cells grown at 30 °C with the CO2 supplementation but not in the other three types of cells. Since oxygen-evolving activities of the four types of cells are almost unchanged, it is suggested that the CO2 supplementation and growth temperature are involved in the regulation of photosynthetic light-harvesting apparatus in C. gracilis at different degrees. Based on these observations, we discuss the favorable growth conditions for C. gracilis.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
8
|
Tanabe M, Ueno Y, Yokono M, Shen JR, Nagao R, Akimoto S. Changes in excitation relaxation of diatoms in response to fluctuating light, probed by fluorescence spectroscopies. PHOTOSYNTHESIS RESEARCH 2020; 146:143-150. [PMID: 32067138 DOI: 10.1007/s11120-020-00720-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
A marine pennate diatom Phaeodactylum tricornutum (Pt) and a marine centric diatom Chaetoceros gracilis (Cg) possess unique light-harvesting complexes, fucoxanthin chlorophyll a/c-binding proteins (FCPs). FCPs have dual functions: light harvesting in the blue to green regions and quenching of excess energy. So far, excitation dynamics including FCPs have been studied by altering continuous light conditions. In the present study, we examined responses of the diatom cells to fluctuating light (FL) conditions. Excitation dynamics in the cells incubated under the FL conditions were analyzed by time-resolved fluorescence measurements followed by global analysis. As responses common to the Pt and Cg cells, quenching behaviors were observed in photosystem (PS) II with time constants of hundreds of picoseconds. The PSII → PSI energy transfer was modified only in the Pt cells, whereas quenching in FCPs was suggested only in the Cg cells, indicating different strategy for the dissipation of excess energy under the FL conditions.
Collapse
Affiliation(s)
- Miyuki Tanabe
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Makio Yokono
- Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi, 243-0041, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
9
|
Oka K, Ueno Y, Yokono M, Shen JR, Nagao R, Akimoto S. Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. PHOTOSYNTHESIS RESEARCH 2020; 146:227-234. [PMID: 31965467 DOI: 10.1007/s11120-020-00714-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Fucoxanthin-chlorophyll (Chl) a/c-binding proteins (FCPs) are light-harvesting pigment-protein complexes found in diatoms and brown algae. Due to the characteristic pigments, such as fucoxanthin and Chl c, FCPs can capture light energy in blue-to green regions. A pennate diatom Phaeodactylum tricornutum synthesizes a red-shifted form of FCP under weak or red light, extending a light-absorption ability to longer wavelengths. In the present study, we examined changes in light-harvesting and energy-transfer processes of P. tricornutum cells grown under white- and single-colored light-emitting diodes (LEDs). The red-shifted FCP appears in the cells grown under the green, yellow, and red LEDs, and exhibited a fluorescence peak around 714 nm. Additional energy-transfer pathways are established in the red-shifted FCP; two forms (F713 and F718) of low-energy Chl a work as energy traps at 77 K. Averaged fluorescence lifetimes are prolonged in the cells grown under the yellow and red LEDs, whereas they are shortened in the blue-LED-grown cells. Based on these results, we discussed the light-adaptation machinery of P. tricornutum cells involved in the red-shifted FCP.
Collapse
Affiliation(s)
- Kumiko Oka
- Faculty of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Makio Yokono
- Innovation Center, Nippon Flour Mills Co., Ltd, Atsugi, 243-0041, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Seiji Akimoto
- Faculty of Science, Kobe University, Kobe, 657-8501, Japan.
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
10
|
Molecular organizations and function of iron-stress-induced-A protein family in Anabaena sp. PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148327. [PMID: 33069682 DOI: 10.1016/j.bbabio.2020.148327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Iron-stress-induced-A proteins (IsiAs) are expressed in cyanobacteria under iron-deficient conditions, and surround photosystem I (PSI) trimer with a ring formation. A cyanobacterium Anabaena sp. PCC 7120 has four isiA genes; however, it is unknown how the IsiAs are associated with PSI. Here we report on molecular organizations and function of the IsiAs in this cyanobacterium. A deletion mutant of the isiA1 gene was constructed, and the four types of thylakoids were prepared from the wild-type (WT) and ΔisiA1 cells under iron-replete (+Fe) and iron-deficient (-Fe) conditions. Immunoblotting analysis exhibits a clear expression of the IsiA1 in the WT-Fe. The PSI-IsiA1 supercomplex is found in the WT-Fe, and excitation-energy transfer from IsiA1 to PSI is verified by time-resolved fluorescence analyses. Instead of the IsiA1, both IsiA2 and IsiA3 are bound to PSI monomer in the ΔisiA1-Fe. These findings provide insights into multiple-expression system of the IsiA family in this cyanobacterium.
Collapse
|
11
|
Nagao R, Kato K, Ifuku K, Suzuki T, Kumazawa M, Uchiyama I, Kashino Y, Dohmae N, Akimoto S, Shen JR, Miyazaki N, Akita F. Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex. Nat Commun 2020; 11:2481. [PMID: 32424145 PMCID: PMC7235021 DOI: 10.1038/s41467-020-16324-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022] Open
Abstract
Photosynthetic light-harvesting complexes (LHCs) play a pivotal role in collecting solar energy for photochemical reactions in photosynthesis. One of the major LHCs are fucoxanthin chlorophyll a/c-binding proteins (FCPs) present in diatoms, a group of organisms having important contribution to the global carbon cycle. Here, we report a 2.40-Å resolution structure of the diatom photosystem I (PSI)-FCPI supercomplex by cryo-electron microscopy. The supercomplex is composed of 16 different FCPI subunits surrounding a monomeric PSI core. Each FCPI subunit showed different protein structures with different pigment contents and binding sites, and they form a complicated pigment-protein network together with the PSI core to harvest and transfer the light energy efficiently. In addition, two unique, previously unidentified subunits were found in the PSI core. The structure provides numerous insights into not only the light-harvesting strategy in diatom PSI-FCPI but also evolutionary dynamics of light harvesters among oxyphototrophs.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Minoru Kumazawa
- Faculty of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ikuo Uchiyama
- National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, 444-8585, Japan
| | - Yasuhiro Kashino
- Graduate School of Life Science, University of Hyogo, Hyogo, 678-1297, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan. .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8577, Japan.
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan. .,Japan Science and Technology Agency, PRESTO, Saitama, 332-0012, Japan.
| |
Collapse
|
12
|
Ueno Y, Nagao R, Shen JR, Akimoto S. Spectral Properties and Excitation Relaxation of Novel Fucoxanthin Chlorophyll a/ c-Binding Protein Complexes. J Phys Chem Lett 2019; 10:5148-5152. [PMID: 31424938 DOI: 10.1021/acs.jpclett.9b02093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fucoxanthin chlorophyll a/c-binding proteins (FCPs) are unique light harvesters for some photosynthetic organisms. There were several reports for the alterations of FCPs in response to light conditions. Here, we present the spectral profiles and excitation dynamics of novel FCP complexes isolated from the diatom Chaetoceros gracilis. Under a red-light condition, C. gracilis cells expressed three types of FCP complexes, two of which are very similar to FCP complexes found in the white-light grown cells, and one of which is the novel FCP complex. The combination of steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra revealed that, compared to other types of FCP complexes, the novel FCP complexes exhibited red-shifted absorption and fluorescence spectra and fast decay of excitation. This finding will provide new insights into not only the light-harvesting strategies of diatoms but also the diversity of light adaptation machinery for photosynthetic organisms.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
13
|
Nagao R, Ueno Y, Yokono M, Shen JR, Akimoto S. Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2019; 141:355-365. [PMID: 30993504 DOI: 10.1007/s11120-019-00639-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/04/2019] [Indexed: 05/12/2023]
Abstract
Controlling excitation energy flow is a fundamental ability of photosynthetic organisms to keep a better performance of photosynthesis. Among the organisms, diatoms have unique light-harvesting complexes, fucoxanthin chlorophyll (Chl) a/c-binding proteins. We have recently investigated light-adaptation mechanisms of a marine centric diatom, Chaetoceros gracilis, by spectroscopic techniques. However, it remains unclear how pennate diatoms regulate excitation energy under different growth light conditions. Here, we studied light-adaptation mechanisms in a marine pennate diatom Phaeodactylum tricornutum grown at 30 µmol photons m-2 s-1 and further incubated for 24 h either in the dark, or at 30 or 300 µmol photons m-2 s-1 light intensity, by time-resolved fluorescence (TRF) spectroscopy. The high-light incubated cells showed no detectable oxygen-evolving activity of photosystem II, indicating the occurrence of a severe photodamage. The photodamaged cells showed alterations of steady-state absorption and fluorescence spectra and TRF spectra compared with the dark and low-light adapted cells. In particular, excitation-energy quenching is significantly accelerated in the photodamaged cells as shown by mean lifetime analysis of the Chl fluorescence. These spectral changes by the high-light treatment may result from arrangements of pigment-protein complexes to maintain the photosynthetic performance under excess light illumination. These growth-light dependent spectral properties in P. tricornutum are largely different from those in C. gracilis, thus providing insights into the different light-adaptation mechanisms between the pennate and centric diatoms.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Makio Yokono
- Nippon Flour Mills Co., Ltd, Innovation Center, Atsugi, 243-0041, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
14
|
Nagao R, Ueno Y, Akita F, Suzuki T, Dohmae N, Akimoto S, Shen JR. Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. PHOTOSYNTHESIS RESEARCH 2019; 140:141-149. [PMID: 30187302 DOI: 10.1007/s11120-018-0576-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Diatoms are dominant phytoplankton in aquatic environments and have unique light-harvesting apparatus, fucoxanthin chlorophyll a/c-binding protein (FCP). Diatom photosystem I (PSI) interacts with specific FCPs (FCPI); however, it remains unclear how PSI cores receive excitation energy from FCPI. To analyze the energy transfer dynamics, it is necessary to isolate both PSI cores and PSI-FCPI complexes. In this study, we prepared three PSI complexes, which are PSI-FCPI membrane fragments, detergent-solubilized PSI-FCPI supercomplexes and PSI core-like complexes, from the marine centric diatom, Chaetoceros gracilis, and examined their biochemical properties. Both the PSI-FCPI membrane fragments and supercomplexes showed similar subunit compositions including FCPI, whereas the PSI complexes were devoid of most FCPI subunits. The purity and homogeneity of the two detergent-solubilized PSI preparations were verified by clear-native PAGE and electron microscopy. The difference of pigment contents among the three PSI samples was shown by absorption spectra at 77 K. The intensity in the whole spectrum of PSI-FCPI membranes was much higher than those of the other two complexes, while the spectral shape of PSI complexes was similar to that of cyanobacterial PSI core complexes. 77-K fluorescence spectra of the three PSI preparations exhibited different spectral shapes, especially peak positions and band widths. Based on these observations, we discuss the merits of three PSI preparations for evaluating excitation energy dynamics in diatom PSI-FCPI complexes.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama, 700-8530, Japan.
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama, 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama, 700-8530, Japan.
| |
Collapse
|
15
|
Wang W, Yu LJ, Xu C, Tomizaki T, Zhao S, Umena Y, Chen X, Qin X, Xin Y, Suga M, Han G, Kuang T, Shen JR. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 2019; 363:363/6427/eaav0365. [DOI: 10.1126/science.aav0365] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/31/2018] [Indexed: 01/23/2023]
Abstract
Diatoms are abundant photosynthetic organisms in aquatic environments and contribute 40% of its primary productivity. An important factor that contributes to the success of diatoms is their fucoxanthin chlorophyll a/c-binding proteins (FCPs), which have exceptional light-harvesting and photoprotection capabilities. Here, we report the crystal structure of an FCP from the marine diatom Phaeodactylum tricornutum, which reveals the binding of seven chlorophylls (Chls) a, two Chls c, seven fucoxanthins (Fxs), and probably one diadinoxanthin within the protein scaffold. Efficient energy transfer pathways can be found between Chl a and c, and each Fx is surrounded by Chls, enabling the energy transfer and quenching via Fx highly efficient. The structure provides a basis for elucidating the mechanisms of blue-green light harvesting, energy transfer, and dissipation in diatoms.
Collapse
|
16
|
Nagao R, Yokono M, Ueno Y, Shen JR, Akimoto S. Low-Energy Chlorophylls in Fucoxanthin Chlorophyll a/c-Binding Protein Conduct Excitation Energy Transfer to Photosystem I in Diatoms. J Phys Chem B 2018; 123:66-70. [DOI: 10.1021/acs.jpcb.8b09253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Makio Yokono
- Nippon Flour Mills Co., Ltd., Innovation Center, Atsugi 243-0041, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|