1
|
de Carli GJ, Contiliani DF, Giuliatti S, Pereira TC. An Animal Able To Tolerate D 2 O. Chembiochem 2020; 22:988-991. [PMID: 33125805 DOI: 10.1002/cbic.202000642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/29/2020] [Indexed: 11/11/2022]
Abstract
It is possible to gain a deeper insight into the role of water in biology by using physicochemical variant molecules, such as deuterium oxide (D2 O); however, D2 O is toxic to multicellular organisms in high concentrations. By using a unique desiccation-rehydration process, we demonstrate that the anhydrobiotic nematode Panagrolaimus superbus is able to tolerate and proliferate in 99 % D2 O. Moreover, we analysed P. superbus' water-channel protein (aquaporin; AQP), which is associated with dehydration/rehydration, by comparing its primary structure and modelling its tertiary structure in silico. Our data evidence that P. superbus' AQP is an aquaglyceroporin, a class of water channel known to display a wider pore; this helps to explain the rapid and successful organismal influx of D2 O into this species. This is the first demonstration of an animal able to withstand high D2 O levels, thus paving a way for the investigation of the effects D2 O on higher levels of biological organization.
Collapse
Affiliation(s)
- Gabriel José de Carli
- Department of Biology, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Brazil.,Graduate Program of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Brazil
| | - Danyel Fernandes Contiliani
- Department of Biology, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Brazil.,Graduate Program of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Brazil
| | - Silvana Giuliatti
- Graduate Program of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Brazil.,Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Brazil
| | - Tiago Campos Pereira
- Department of Biology, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Brazil.,Graduate Program of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, Brazil
| |
Collapse
|
2
|
Ten Veldhuis MC, Ananyev G, Dismukes GC. Symbiosis extended: exchange of photosynthetic O 2 and fungal-respired CO 2 mutually power metabolism of lichen symbionts. PHOTOSYNTHESIS RESEARCH 2020; 143:287-299. [PMID: 31893333 PMCID: PMC7052035 DOI: 10.1007/s11120-019-00702-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Lichens are a symbiosis between a fungus and one or more photosynthetic microorganisms that enables the symbionts to thrive in places and conditions they could not compete independently. Exchanges of water and sugars between the symbionts are the established mechanisms that support lichen symbiosis. Herein, we present a new linkage between algal photosynthesis and fungal respiration in lichen Flavoparmelia caperata that extends the physiological nature of symbiotic co-dependent metabolisms, mutually boosting energy conversion rates in both symbionts. Measurements of electron transport by oximetry show that photosynthetic O2 is consumed internally by fungal respiration. At low light intensity, very low levels of O2 are released, while photosynthetic electron transport from water oxidation is normal as shown by intrinsic chlorophyll variable fluorescence yield (period-4 oscillations in flash-induced Fv/Fm). The rate of algal O2 production increases following consecutive series of illumination periods, at low and with limited saturation at high light intensities, in contrast to light saturation in free-living algae. We attribute this effect to arise from the availability of more CO2 produced by fungal respiration of photosynthetically generated sugars. We conclude that the lichen symbionts are metabolically coupled by energy conversion through exchange of terminal electron donors and acceptors used in both photosynthesis and fungal respiration. Algal sugars and O2 are consumed by the fungal symbiont, while fungal delivered CO2 is consumed by the alga.
Collapse
Affiliation(s)
- Marie-Claire Ten Veldhuis
- Water Resources Section, Delft University of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands.
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| |
Collapse
|