1
|
Yin F, Li J, Wang Y, Yang Z. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116113. [PMID: 38364761 DOI: 10.1016/j.ecoenv.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Fengwei Yin
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Jianbin Li
- Jiaojiang Branch of Taizhou Municipal Ecology and Environment Bureau, Taizhou 318000, People's Republic of China
| | - Yilu Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhongyi Yang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China.
| |
Collapse
|
2
|
Yen KW, Chen WC, Su JJ. Recovery of Copper and Zinc from Livestock Bio-Sludge with An Environmentally Friendly Organic Acid Extraction. Animals (Basel) 2024; 14:342. [PMID: 38275801 PMCID: PMC10812635 DOI: 10.3390/ani14020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Pig farmers in Taiwan tend to overdose copper (Cu) and zinc (Zn) in animal feeds to ensure pig health. The application of Cu- or Zn-rich livestock compost to fields can result in high Cu/Zn residues in surface soil and violate limitations for zinc and copper in land applications. This study aims to extract Cu and Zn from sludge using organic acid or H2O2/organic acids. The livestock bio-sludge was dried and treated with different concentrations of acetic acid (1N, 2N, and 4N). The acid-extracted sludge was then treated with or without adding H2O2 during different periods (4, 24, and 48 h) to investigate the efficiency of acid extraction of Cu and Zn. The supernatant of the acid-extracted product was separated from the residues through centrifugation. Experimental results showed that the treatment set of dried bio-sludge with 2% H2O2 significantly promoted the removal efficiency of Cu and Zn from the bio-sludge (p < 0.01). The best removal efficiency of Cu and Zn from the bio-sludge was 40% and 70%, respectively, using 4N acetic acid in the 48 h group. The study shows a green method for extracting Cu and Zn from livestock sludge, enhancing the sustainability of intensive livestock farming.
Collapse
Affiliation(s)
- Kuang-Wei Yen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10673, Taiwan
| | - Wei-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10673, Taiwan
| | - Jung-Jeng Su
- Department of Animal Science and Technology, National Taiwan University, Taipei 10673, Taiwan
- Bioenergy Research Center, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Coverdale JPC, Polepalli S, Arruda MAZ, da Silva ABS, Stewart AJ, Blindauer CA. Recent Advances in Metalloproteomics. Biomolecules 2024; 14:104. [PMID: 38254704 PMCID: PMC10813065 DOI: 10.3390/biom14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Interactions between proteins and metal ions and their complexes are important in many areas of the life sciences, including physiology, medicine, and toxicology. Despite the involvement of essential elements in all major processes necessary for sustaining life, metalloproteomes remain ill-defined. This is not only owing to the complexity of metalloproteomes, but also to the non-covalent character of the complexes that most essential metals form, which complicates analysis. Similar issues may also be encountered for some toxic metals. The review discusses recently developed approaches and current challenges for the study of interactions involving entire (sub-)proteomes with such labile metal ions. In the second part, transition metals from the fourth and fifth periods are examined, most of which are xenobiotic and also tend to form more stable and/or inert complexes. A large research area in this respect concerns metallodrug-protein interactions. Particular attention is paid to separation approaches, as these need to be adapted to the reactivity of the metal under consideration.
Collapse
Affiliation(s)
- James P. C. Coverdale
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston B15 2TT, UK;
| | | | - Marco A. Z. Arruda
- Institute of Chemistry, Department of Analytical Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; (M.A.Z.A.); (A.B.S.d.S.)
| | - Ana B. Santos da Silva
- Institute of Chemistry, Department of Analytical Chemistry, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; (M.A.Z.A.); (A.B.S.d.S.)
| | - Alan J. Stewart
- School of Medicine, University of St. Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
4
|
Corapi A, Gallo L, Tursi A, Lucadamo L. Agricultural drift depositional simulation of a copper-based fungicide and its effects on non-target terrestrial and freshwater compartments. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:370-382. [PMID: 36995475 DOI: 10.1007/s10646-023-02647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Our research investigated the potential impacts of the fungicide Bordeaux mixture drift processes on off-target species representing terrestrial vegetation and fluvial-lacustrine zooplankton. The simulation of drift events was carried out by a predictive scaling analysis of the quantities potentially exported to a predetermined area adjacent to an agricultural field. The theoretical rate of deposition on a terrestrial species, the lichen Pseudevernia furfuracea, was calculated following high (4 kg ha-1) and low (2 kg ha-1) rate treatments using anti-drift nozzles and non-anti-drift nozzles. The experimental set up consisted in 40 boxes holding lichen thalli, all stored in a climatic chamber for 40 days. Spraying of the fungicide was alternated with rainfall simulations to reproduce scenarios related to agricultural practices. Following a single simulation, anti-drift nozzles resulted in a higher overall load deposited per unit of lichen surface area compared to non-anti-drift nozzles, although both loads significantly differed from controls. However, only anti-drift nozzles, associated with the high rate, caused a remarkable impairment of several ecophysiological parameters, differing (p < 0.05) from controls. Rainfalls promoted activation of lichen metabolism, mitigating the cell damage, but exported only 2.5% of the copper deposited on the thalli surfaces. Nevertheless, the exposure of Daphnia magna neonates to leachates showed significant outcomes for the two rates. After only 24 h, leachates resulting from the high application rate led to widespread mortality, which appeared to be extremely relevant after 48 h, whereas the lower rate induced much lower toxicity for both exposure times.
Collapse
Affiliation(s)
- A Corapi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, 87036, CS, Italy.
| | - L Gallo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, 87036, CS, Italy
| | - A Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, 87036, CS, Italy
| | - L Lucadamo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, 87036, CS, Italy
| |
Collapse
|
5
|
Dauda S, Lombardi AT. Environmentally relevant copper concentrations stimulate photosynthesis in Monoraphidium sp. PHOTOSYNTHESIS RESEARCH 2023; 155:49-58. [PMID: 36266605 DOI: 10.1007/s11120-022-00976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Microalgae require copper (Cu) in trace levels for their growth and metabolism, it is a vital component of certain metalloproteins. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less studied. We studied the photosynthesis and growth of the Chlorophyte Monoraphidium sp. exposed to Cu ranging from low (1.7 nM) to high (589.0 nM) free Cu ions (Cu2+) concentrations. The growth rate was unaffected by Cu concentrations in the range of 1.7-7.4 nM Cu2+, but decreased beyond it. The relative maximum electron transport rate (rETRm), saturation irradiance (Ek), photochemical quenching (qP and qL), and PSII operating efficiency [Formula: see text] were stimulated in the 3.4-7.4 nM Cu2+ range, concentrations slightly higher than the control, whereas non-photochemical quenching (NPQ) gradually increased with increasing Cu2+. The photosystem II antenna size [Sigma (II)440] increased under high Cu (589.0 nM), which resulted in a decrease in the quinone A (QA) reduction time (tau). In contrast, the QA re-oxidation time was unaffected by Cu exposure. These findings show that a slight increase in Cu stimulated photosynthesis in Monoraphidium sp., whereas high Cu reduced photosynthesis and increased the dissipation of captured light energy. This research is a contribution to the understanding of the dynamic photo-physiological responses of Monoraphidium sp. to Cu ions.
Collapse
Affiliation(s)
- Suleiman Dauda
- Programa de Pós-Graduação em Ecologia e Recursos Naturais (PPGERN), Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil.
- Departamento de Botânica, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil.
| | - Ana Teresa Lombardi
- Departamento de Botânica, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, CEP 13565-905, Brazil
| |
Collapse
|
6
|
Ghazaryan KA, Movsesyan HS, Minkina TM, Nevidomskaya DG, Rajput VD. Phytoremediation of copper-contaminated soil by Artemisia absinthium: comparative effect of chelating agents. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1203-1215. [PMID: 34750677 DOI: 10.1007/s10653-021-01151-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is a promising method for the removal of toxic trace elements, specifically of copper, from the contaminated soil in the mining regions of Armenia. Thereby, the objectives of our study were the assessment of copper accumulation capacity and phytoremediation suitability of wormwood (Artemisia absinthium L.), a potential metal hyperaccumulator, as well as the identification of the influence of some chelating agents and their combinations on copper phytoremediation effectiveness. The results of studies have shown that A. absinthium is a relatively well-adapted plant species with the ability to grow in copper-contaminated soils collected from the surroundings of Zangezur Copper and Molybdenum Combine (south-east of Armenia). The observed decrease in plant growth in contaminated soil was possible to restore by the use of ammonium nitrate. It was revealed that for the remediation of copper-contaminated soils by phytostabilisation method, A. absinthium could be grown without the application of chelating agents, as being a perennial herb, it is able to accumulate relatively high contents of copper in its root and do not transfer this metal to the above-ground part at the same time. As opposed to the phytostabilisation method, for the cleaning of copper-contaminated soils through phytoextraction method by A. absinthium, the application of chemical amendments is needed for the enhancement of copper bioavailability and for its intensive transportation to the above-ground part of the plant. Collating the effects of various chemical agents on the plant, we concluded that the growth scheme, when the application of NH4NO3, a promoter of plant growth, is combined with the joint use of citric and malic acids, can be applied as the most expedient approach for remediation of copper-contaminated soils by phytoextraction method.
Collapse
|
7
|
Kumar PS, Gayathri R, Rathi BS. A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. CHEMOSPHERE 2021; 285:131438. [PMID: 34252804 DOI: 10.1016/j.chemosphere.2021.131438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Water is a basic and significant asset for living beings. Water assets are progressively diminishing due to huge populace development, industrial activities, urbanization and rural exercises. Few heavy metals include zinc, copper, lead, nickel, cadmium and so forth can easily transfer into the water system either direct or indirect activities of electroplating, mining, tannery, painting, fertilizer industries and so forth. The different treatment techniques have been utilized to eliminate the heavy metals from aquatic system, which includes coagulation/flocculation, precipitation, membrane filtration, oxidation, flotation, ion exchange, photo catalysis and adsorption. The adsorption technique is a better option than other techniques because it can eliminate heavy metals even at lower metal ions concentration, simplicity and better regeneration behavior. Agricultural wastes are low-cost biosorbent and typically containing cellulose have the ability to absorb a variety of contaminants. It is important to note that almost all agro wastes are no longer used in their original form but are instead processed in a variety of techniques to improve the adsorption capacity of the substance. The wide range of adsorption capacities for agro waste materials were observed and almost more than 99% removal of toxic pollutants from aquatic systems were achieved using modified agro-waste materials. The present review aims at the water pollution due to heavy metals, as well as various heavy metal removal treatment procedures. The primary objectives of this research is to include an overview of adsorption and various agriculture based adsorbents and its comparison in heavy metal removal.
Collapse
Affiliation(s)
- P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Gayathri
- Tamilnadu Pollution Control Board, Guindy, Chennai, 600032, India
| | - B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| |
Collapse
|
8
|
Naturally zinc-containing bacteriochlorophyll a ([Zn]-BChl a) protects the photosynthetic apparatus of Acidiphilium rubrum from copper toxicity damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148472. [PMID: 34217700 DOI: 10.1016/j.bbabio.2021.148472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022]
Abstract
In almost all photosynthetic organisms the photosynthetic pigments chlorophyll and bacteriochlorophyll (BChl) are Mg2+ containing complexes, but Mg2+ may be exchanged against other metal ions when these are present in toxic concentrations, leading to inactivation of photosynthesis. In this report we studied mechanisms of copper toxicity to the photosynthetic apparatus of Acidiphilium rubrum, an acidophilic purple bacterium that uses Zn2+ instead of Mg2+ as the central metal in the BChl molecules ([Zn]-BChl) of its reaction centres (RCs) and light harvesting proteins (LH1). We used a combination of in vivo measurements of photosynthetic activity (fast fluorescence and absorption kinetics) together with analysis of metal binding to pigments and pigment-protein complexes by HPLC-ICP-sfMS to monitor the effect of Cu2+ on photosynthesis of A. rubrum. Further, we found that its cytoplasmic pH is neutral. We compared these results with those obtained from Rhodospirillum rubrum, a purple bacterium for which we previously reported that the central Mg2+ of BChl can be replaced in vivo in the RCs by Cu2+ under environmentally realistic Cu2+ concentrations, leading to a strong inhibition of photosynthesis. Thus, we observed that A. rubrum is much more resistant to copper toxicity than R. rubrum. Only slight changes of photosynthetic parameters were observed in A. rubrum at copper concentrations that were severely inhibitory in R. rubrum and in A. rubrum no copper complexes of BChl were found. Altogether, the data suggest that [Zn]-BChl protects the photosynthetic apparatus of A. rubrum from detrimental insertion of Cu2+ (trans-metallation) into BChl molecules of its RCs.
Collapse
|
9
|
Vidal C, Larama G, Riveros A, Meneses C, Cornejo P. Main Molecular Pathways Associated with Copper Tolerance Response in Imperata cylindrica by de novo Transcriptome Assembly. PLANTS (BASEL, SWITZERLAND) 2021; 10:357. [PMID: 33668499 PMCID: PMC7918359 DOI: 10.3390/plants10020357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022]
Abstract
The metallophyte Imperata cylindrica inhabits copper (Cu) polluted soils in large areas from Central Chile. Here, we subjected clonal vegetative plantlets to 300 mg Cu kg-1 of substrate for 21 days to identify the main molecular pathways involved in the response to Cu stress. Transcriptomic analyses were performed for shoots and roots, with and without Cu supply. RNA-Seq and de novo transcriptome assembly were performed to identify the gene response associated with molecular mechanisms of Cu tolerance in I. cylindrica. De novo transcriptome revealed a total of 200,521 transcripts (1777 bp) comprising ~91% complete ultra-conserved genes in the eukaryote and Plantae database. The differentially expressed genes (DEGs) in roots were 7386, with 3558 of them being up-regulated and the other 3828 down-regulated. The transcriptome response in shoots was significantly less, showing only 13 up-regulated and 23 down-regulated genes. Interestingly, DEGs mainly related with actin and cytoskeleton formation, and to a minor degree, some DEGs associated with metal transporters and superoxide dismutase activity in root tissues were found. These transcriptomic results suggest that cytoskeleton could be acting as a mechanism of Cu-binding in the root, resulting in a high Cu tolerance response in this metallophyte, which deserve to be analyzed ultra-structurally. Our study contributes to reinforcing the potential of I. cylindrica as a candidate plant species to be used as a phytoremediation agent in Cu-contaminated environments.
Collapse
Affiliation(s)
- Catalina Vidal
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, Temuco 4780000, Chile;
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Avda. Francisco Salazar, Temuco 4780000, Chile
| | - Giovanni Larama
- Centro de Modelación y Computación Científica, Universidad de La Frontera, Avda. Francisco Salazar, Temuco 4780000, Chile;
| | - Aníbal Riveros
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (A.R.); (C.M.)
- FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (A.R.); (C.M.)
- FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, Temuco 4780000, Chile;
| |
Collapse
|
10
|
Grajek H, Rydzyński D, Piotrowicz-Cieślak A, Herman A, Maciejczyk M, Wieczorek Z. Cadmium ion-chlorophyll interaction - Examination of spectral properties and structure of the cadmium-chlorophyll complex and their relevance to photosynthesis inhibition. CHEMOSPHERE 2020; 261:127434. [PMID: 32717505 DOI: 10.1016/j.chemosphere.2020.127434] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Chlorophyll was shown to spontaneously form a complex with cadmium, which is incorporated at the central position of the chlorophyll molecule porphyrin ring, where it replaces magnesium. The rate of complex formation depended on the ratio of Cd2+ ions to chlorophyll concentration in the solution. In solutions with chlorophyll concentration of C = 1 × 10-5 M and Cd2+ concentrations of C = 1 × 10-5 M, C = 1 × 10-3 M and C = 9 × 10-3 M, Cd-Chl complex formation was completed after 200 h, 50 h and 33 h, respectively. The formation of Cd-Chl complex followed the second order over all substrates reaction order, first order over Cd2+ concentration and first over Chl concentration. The pseudo second order reaction rate constant k, when Cd2+ concentration was equal Chl concentration have been obtained as k = 1.510 ± 0.023 × 10-4 M-1min-1. Quantum chemistry computations showed that Cd-chlorophyll complex existed in two conformations in the methanol solution with cadmium ion placed either below or above the coordination plane. Two times smaller overlap integral of the Chl fluorescence spectrum with the Cd-Chl absorption spectrum IChl,Cd-Chl= 2.4223 × 10-13 cm3/M in comparison with the overlap integral of the Chl fluorescence spectrum with the Chl absorption spectrum IChl,Chl= 4.6210 × 10-13 cm3/M (twice lower probability of energy transfer Chl∗ → Cd-Chl than Chl∗ → Chl) and lower Förster critical distance for resonance energy transfer: RoChl→Cd-Chl= 46.773 Å, RoChl→Chl= 52.086 Å, indicated that in plants intoxicated with cadmium, taken up from the contaminated soil, the energy transfer between Chl and Cd-Chl in antennas will be disturbed, which may be one of the reasons for the inhibition of photosynthesis.
Collapse
Affiliation(s)
- Hanna Grajek
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland.
| | - Dariusz Rydzyński
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland; Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland
| | - Agnieszka Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland
| | - Aleksander Herman
- Gdańsk University of Technology, Department of Inorganic Chemistry, Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Maciej Maciejczyk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| | - Zbigniew Wieczorek
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| |
Collapse
|
11
|
Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C, Shahid M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. CHEMOSPHERE 2020; 259:127436. [PMID: 32599387 DOI: 10.1016/j.chemosphere.2020.127436] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 05/27/2023]
Abstract
Copper (Cu) is an essential metal for human, animals and plants, although it is also potentially toxic above supra-optimal levels. In plants, Cu is an essential cofactor of numerous metalloproteins and is involved in several biochemical and physiological processes. However, excess of Cu induces oxidative stress inside plants via enhanced production of reactive oxygen species (ROS). Owing to its dual nature (essential and a potential toxicity), this metal involves a complex network of uptake, sequestration and transport, essentiality, toxicity and detoxification inside the plants. Therefore, it is vital to monitor the biogeo-physiochemical behavior of Cu in soil-plant-human systems keeping in view its possible essential and toxic roles. This review critically highlights the latest understanding of (i) Cu adsorption/desorption in soil (ii) accumulation in plants, (iii) phytotoxicity, (iv) tolerance mechanisms inside plants and (v) health risk assessment. The Cu-mediated oxidative stress and resulting up-regulation of several enzymatic and non-enzymatic antioxidants have been deliberated at molecular and cellular levels. Moreover, the role of various transporter proteins in Cu uptake and its proper transportation to target metalloproteins is critically discussed. The review also delineates Cu build-up in plant food and accompanying health disorders. Finally, this review proposes some future perspectives regarding Cu biochemistry inside plants. The review, to a large extent, presents a complete picture of the biogeo-physiochemical behavior of Cu in soil-plant-human systems supported with up-to-date 10 tables and 5 figures. It can be of great interest for post-graduate level students, scientists, industrialists, policymakers and regulatory authorities.
Collapse
Affiliation(s)
- Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Aneeza Sardar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Abrar Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058, Toulouse, Cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326, Auzeville-Tolosane, France; Association Réseau-Agriville, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan. http://reseau-agriville.com/
| |
Collapse
|
12
|
Pires-Lira MF, de Castro EM, Lira JMS, de Oliveira C, Pereira FJ, Pereira MP. Potential of Panicum aquanticum Poir. (Poaceae) for the phytoremediation of aquatic environments contaminated by lead. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110336. [PMID: 32092581 DOI: 10.1016/j.ecoenv.2020.110336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 05/04/2023]
Abstract
Aquatic environments contaminated by lead (Pb) are a problem in many regions of world. Since Pb has high toxicity, the identification of species for phytoremediation is important for the recovery of these areas. Thus, the phytoremediation potential of Panicum aquaticum Poir. (Poaceae) was evaluated. The anatomical and physiological responses of P. aquaticum were assessed under different concentrations of Pb [0.0, 0.5, 1.0, 2.0, 4.0, and 8.0 mM of Pb(NO3)2]. Plant growth, anatomy of roots and leaves, root uptake, root to shoot translocation, and the concentration and accumulation of Pb in organs were analyzed. Regarding leaf anatomy, Pb treatment led to changes in epidermis thickness, stomatal density, stomatal diameter, and sclerenchymal area. Endoderm thickness was increased at the highest concentrations of Pb, which may be related to reduced translocation and shoot accumulation. The roots of P. aquaticum presented increased absorption (2279 μg g-1 DW-1 of Pb). In conclusion, P. aquaticum was found to have potential for the phytoremediation of areas contaminated with Pb.
Collapse
Affiliation(s)
- Marinês F Pires-Lira
- Department of Biology, Federal University of Lavras, CP 3037, 37200-000, Lavras, Minas Gerais, Brazil.
| | - Evaristo M de Castro
- Department of Biology, Federal University of Lavras, CP 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Jean Marcel S Lira
- Institute of Natural Sciences, Federal University of Alfenas, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Cynthia de Oliveira
- Department of Soil Science, Federal University of Lavras, CP 3037, 37200-000, Lavras, Minas Gerais, Brazil.
| | - Fabrico J Pereira
- Institute of Natural Sciences, Federal University of Alfenas, 37130-001, Alfenas, Minas Gerais, Brazil
| | - Marcio P Pereira
- Department of Biology, Federal University of Lavras, CP 3037, 37200-000, Lavras, Minas Gerais, Brazil
| |
Collapse
|
13
|
Küpper H, Bokhari SNH, Jaime-Pérez N, Lyubenova L, Ashraf N, Andresen E. Ultratrace Metal Speciation Analysis by Coupling of Sector-Field ICP-MS to High-Resolution Size Exclusion and Reversed-Phase Liquid Chromatography. Anal Chem 2019; 91:10961-10969. [DOI: 10.1021/acs.analchem.9b00222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hendrik Küpper
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Center of the Czech Academy of Sciences, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
- Department of Experimental Plant Biology, University of South Bohemia, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Center of the Czech Academy of Sciences, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Noelia Jaime-Pérez
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Center of the Czech Academy of Sciences, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Lyudmila Lyubenova
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Center of the Czech Academy of Sciences, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Nermeen Ashraf
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Center of the Czech Academy of Sciences, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
- Department of Experimental Plant Biology, University of South Bohemia, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Elisa Andresen
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Center of the Czech Academy of Sciences, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| |
Collapse
|