1
|
Shrivastava A, Kumar A, Aggarwal LM, Pradhan S, Choudhary S, Ashish A, Kashyap K, Mishra S. Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies. J Membr Biol 2024; 257:281-305. [PMID: 39183198 DOI: 10.1007/s00232-024-00323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Electrophysiology typically deals with the electrical properties of excitable cells like neurons and muscles. However, all other cells (non-excitable) also possess bioelectric membrane potentials for intracellular and extracellular communications. These membrane potentials are generated by different ions present in fluids available in and outside the cell, playing a vital role in communication and coordination between the cell and its organelles. Bioelectric membrane potential variations disturb cellular ionic homeostasis and are characteristic of many diseases, including cancers. A rapidly increasing interest has emerged in sorting out the electrophysiology of cancer cells. Compared to healthy cells, the distinct electrical properties exhibited by cancer cells offer a unique way of understanding cancer development, migration, and progression. Decoding the altered bioelectric signals influenced by fluctuating electric fields benefits understanding cancer more closely. While cancer research has predominantly focussed on genetic and molecular traits, the delicate area of electrophysiological characteristics has increasingly gained prominence. This review explores the historical exploration of electrophysiology in the context of cancer cells, shedding light on how alterations in bioelectric membrane potentials, mediated by ion channels and gap junctions, contribute to the pathophysiology of cancer.
Collapse
Affiliation(s)
- Anju Shrivastava
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India.
| | - Amit Kumar
- Department of Anatomy, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Lalit Mohan Aggarwal
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyajit Pradhan
- Radiation Oncology, Mahamana Pandit Madhan Mohan Malaviya Cancer Centre, Varanasi, India
| | - Sunil Choudhary
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Keshav Kashyap
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Shivani Mishra
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Guette-Marquet S, Saunier V, Pilloux L, Roques C, Bergel A. Electrochemical assay of mammalian cell viability. Bioelectrochemistry 2024; 156:108625. [PMID: 38086275 DOI: 10.1016/j.bioelechem.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
We present the first use of amperometric detection to assess the viability of mammalian cells in continuous mode, directly in the cell culture medium. Vero or HeLa cells were injected into electrochemical sensors equipped with a 3-electrode system and containing DCIP 50 µM used as the redox mediator. DCIP was reduced by the viable cells and the reduced form was detected amperometrically at 300 mV vs silver pseudo-reference. The continuous regeneration of the oxidized form of the mediator ensured a stable redox state of the cell environment, allowing the cells to survive during the measurement time. The electrochemical response was related to cell metabolism (no response with dead cells or lysed cells) and depended on both mediator concentration and cell density. The protocol was applied to both cells in suspension and adhered cells. It was also adapted to detect trans-plasma membrane electron transfer (tPMET) by replacing DCIP by ferricyanide 500 µM and using linear scan voltammetry (2 mV/s). The pioneering results described here pave the way to the development of routine electrochemical assays for cell viability and for designing a cell-based analytical platform.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Valentin Saunier
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires I2MC, Equipe 1, Toulouse, France
| | - Ludovic Pilloux
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
3
|
Asadipour K, Hani MB, Potter L, Ruedlinger BL, Lai N, Beebe SJ. Nanosecond Pulsed Electric Fields (nsPEFs) Modulate Electron Transport in the Plasma Membrane and the Mitochondria. Bioelectrochemistry 2024; 155:108568. [PMID: 37738861 DOI: 10.1016/j.bioelechem.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Nanosecond pulsed electric fields (nsPEFs) are a pulsed power technology known for ablating tumors, but they also modulate diverse biological mechanisms. Here we show that nsPEFs regulate trans-plasma membrane electron transport (tPMET) rates in the plasma membrane redox system (PMRS) shown as a reduction of the cell-impermeable, WST-8 tetrazolium dye. At lower charging conditions, nsPEFs enhance, and at higher charging conditions inhibit tPMET in H9c2 non-cancerous cardiac myoblasts and 4T1-luc breast cancer cells. This biphasic nsPEF-induced modulation of tPMET is typical of a hormetic stimulus that is beneficial and stress-adaptive at lower levels and damaging at higher levels. NsPEFs also attenuated mitochondrial electron transport system (ETS) activity (O2 consumption) at Complex I when coupled and uncoupled to oxidative phosphorylation. NsPEFs generated more reactive oxygen species (ROS) in mitochondria (mROS) than in the cytosol (cROS) in non-cancer H9c2 heart cells but more cROS than mROS in 4T1-luc cancer cells. Under lower charging conditions, nsPEFs support glycolysis while under higher charging conditions, nsPEFs inhibit electron transport in the PMRS and the mitochondrial ETS producing ROS, ultimately causing cell death. The impact of nsPEF on ETS presents a new paradigm for considering nsPEF modulation of redox functions, including redox homeostasis and metabolism.
Collapse
Affiliation(s)
- Kamal Asadipour
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Maisoun Bani Hani
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA
| | - Lucas Potter
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | | | - Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA.
| |
Collapse
|
4
|
Guette-Marquet S, Roques C, Bergel A. Direct electrochemical detection of trans-plasma membrane electron transfer: A possible alternative pathway for cell respiration. Biosens Bioelectron 2022; 220:114896. [DOI: 10.1016/j.bios.2022.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
5
|
Eigenschink M, Savran D, Zitterer CP, Granitzer S, Fritz M, Baron DM, Müllner EW, Salzer U. Redox Properties of Human Erythrocytes Are Adapted for Vitamin C Recycling. Front Physiol 2021; 12:767439. [PMID: 34938201 PMCID: PMC8685503 DOI: 10.3389/fphys.2021.767439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Ascorbic acid (AA; or vitamin C) is an important physiological antioxidant and radical scavenger. Some mammalian species, including homo sapiens, have lost the ability to synthetize AA and depend on its nutritional uptake. Erythrocytes from AA-auxotroph mammals express high amounts of the glucose transporter GLUT1. This isoform enables rapid uptake of glucose as well as dehydroascorbate (DHA), the fully oxidized form of AA. Here, we explored the effects of DHA uptake on the redox metabolism of human erythrocytes. DHA uptake enhanced plasma membrane electron transport (PMET) activity. This process is mediated by DCytb, a membrane bound cytochrome catalyzing extracellular reduction of Fe3+ and ascorbate free radical (AFR), the first oxidized form of AA. DHA uptake also decreased cellular radical oxygen species (ROS) levels. Both effects were massively enhanced in the presence of physiological glucose concentrations. Reduction of DHA to AA largely depleted intracellular glutathione (GSH) and induced the efflux of its oxidized form, GSSG. GSSG efflux could be inhibited by MK-571 (IC50 = 5 μM), indicating involvement of multidrug resistance associated protein (MRP1/4). DHA-dependent GSH depletion and GSSG efflux were completely rescued in the presence of 5 mM glucose and, partially, by 2-deoxy-glucose (2-DG), respectively. These findings indicate that human erythrocytes are physiologically adapted to recycle AA both intracellularly via GLUT1-mediated DHA uptake and reduction and extracellularly via DCytb-mediated AFR reduction. We discuss the possibility that this improved erythrocyte-mediated AA recycling was a prerequisite for the emergence of AA auxotrophy which independently occurred at least twice during mammalian evolution.
Collapse
Affiliation(s)
- Michael Eigenschink
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Danylo Savran
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Christoph P Zitterer
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Sebastian Granitzer
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria.,Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Magdalena Fritz
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - David M Baron
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ernst W Müllner
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Ulrich Salzer
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Bennett MR, Jain A, Kovacs K, Hill PJ, Alexander C, Rawson FJ. Engineering bacteria to control electron transport altering the synthesis of non-native polymer. RSC Adv 2021; 12:451-457. [PMID: 35424487 PMCID: PMC8978702 DOI: 10.1039/d1ra06403g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
The use of bacteria as catalysts for radical polymerisations of synthetic monomers has recently been established. However, the role of trans Plasma Membrane Electron Transport (tPMET) in modulating these processes is not well understood. We sort to study this by genetic engineering a part of the tPMET system NapC in E. coli. We show that this engineering altered the rate of extracellular electron transfer coincided with an effect on cell-mediated polymerisation using a model monomer. A plasmid with arabinose inducible PBAD promoters were shown to upregulate NapC protein upon induction at total arabinose concentrations of 0.0018% and 0.18%. These clones (E. coli (IP_0.0018%) and E. coli (IP_0.18%), respectively) were used in iron-mediated atom transfer radical polymerisation (Fe ATRP), affecting the nature of the polymerisation, than cultures containing suppressed or empty plasmids (E. coli (IP_S) and E. coli (E), respectively). These results lead to the hypothesis that EET (Extracellular Electron Transfer) in part modulates cell instructed polymerisations.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Katalin Kovacs
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Bioscience, University of Nottingham Sutton Bonington Campus Nottingham LE15 5RD UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, Boots Science Building, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
7
|
Chen R, Cao J, Jiang W, Wang S, Cheng J. Upregulated Expression of CYBRD1 Predicts Poor Prognosis of Patients with Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:7548406. [PMID: 34594380 PMCID: PMC8478559 DOI: 10.1155/2021/7548406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 01/21/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Cytochrome b reductase 1 (CYBRD1) promotes the development of ovarian serous cystadenocarcinoma (OV). We assessed the function of CYBRD1 in OV underlying The Cancer Genome Atlas (TCGA) database. The correlation between clinicopathological characteristics and CYBRD1 expression was estimated. The Cox proportional hazards regression model and the Kaplan-Meier method were applied to identify clinical features related to overall survival and disease-specific survival. Gene set enrichment analysis (GSEA) was applied to identify the relationship between CYBRD1 expression and immune infiltration. CYBRD1 expression in OV was significantly associated with poor outcomes of primary therapy and FIGO stage. Patients with high levels of CYBRD1 expression were prone to the development of a poorly differentiated tumor and experience of an unfavorable outcome. CYBRD1 expression had significant association with shorter OS and acts as an independent predictor of poor outcome. Moreover, enhanced CYBRD1 expression was positively associated with Tem, NK cells, and mast cells but negatively associated with CD56 bright NK cells and Th2 cells. CYBRD1 expression may serve as a diagnostic and prognostic indicator of OV patients. The mechanisms of poor prognosis of CYBRD1-mediated OV may include increased iron uptake, regulation of immune microenvironment, ferroptosis related pathway, and ERK signaling pathway, among which ferroptosis and ERK signaling pathway may be important pathways of CYBRD1-mediated OV. Furthermore, we verified that CYBRD1 was upregulated in OV and significant correlated with lymph nodes metastasis, advanced stage, poor-differentiated tumor, and poor clinical prognosis in East Hospital cohort. The results of this study may provide guidance for the development of optimal treatment strategies for OV.
Collapse
Affiliation(s)
- Rui Chen
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai 200012, China
| | - Jianhong Cao
- Department of Heart Failure, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Wei Jiang
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai 200012, China
| | - Shunli Wang
- Department of Pathology, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Jingxin Cheng
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai 200012, China
| |
Collapse
|
8
|
Hicks JM, Yao YC, Barber S, Neate N, Watts JA, Noy A, Rawson FJ. Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102517. [PMID: 34269516 DOI: 10.1002/smll.202102517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogramming for energy requirements in cancer. Consequently, the ability to modulate membrane redox systems may give rise to opportunities to modulate underlying biology. The current work aims to develop a wireless bipolar electrochemical approach to form on-demand electron transfer across biological membranes. To achieve this goal, it is shown that by using membrane inserted carbon nanotube porins (CNTPs) that can act as bipolar nanoelectrodes, one can control electron flow with externally applied electric fields across membranes. Before this work, bipolar electrochemistry has been thought to require high applied voltages not compatible with biological systems. It is shown that bipolar electrochemical reaction via gold reduction at the nanotubes can be modulated at low cell-friendly voltages, providing an opportunity to use bipolar electrodes to control electron flux across membranes. The authors provide new mechanistic insight into this newly describe phenomena at the nanoscale. The results presented give rise to a new method using CNTPs to modulate cell behavior via wireless control of membrane electron transfer.
Collapse
Affiliation(s)
- Jacqueline M Hicks
- Biodiscovery Institute, School of Pharmacy, Division of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yun-Chiao Yao
- School of Natural Sciences, University of California Merced, Merced, 95343, USA
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, 94550, USA
| | - Sydney Barber
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, 94550, USA
- United States Naval Academy, Annapolis, 21402, USA
| | - Nigel Neate
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Julie A Watts
- Biodiscovery Institute, School of Pharmacy, Division of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Aleksandr Noy
- School of Natural Sciences, University of California Merced, Merced, 95343, USA
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, 94550, USA
| | - Frankie J Rawson
- Biodiscovery Institute, School of Pharmacy, Division of Regenerative Medicine and Cellular Therapies, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
9
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
10
|
Kaneko M, Ishikawa M, Ishihara K, Nakanishi S. Cell-Membrane Permeable Redox Phospholipid Polymers Induce Apoptosis in MDA-MB-231 Human Breast Cancer Cells. Biomacromolecules 2019; 20:4447-4456. [DOI: 10.1021/acs.biomac.9b01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Graduate School of Engineering Science Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|