1
|
Sluchanko NN, Maksimov EG, Slonimskiy YB, Varfolomeeva LA, Bukhanko AY, Egorkin NA, Tsoraev GV, Khrenova MG, Ge B, Qin S, Boyko KM, Popov VO. Structural framework for the understanding spectroscopic and functional signatures of the cyanobacterial Orange Carotenoid Protein families. Int J Biol Macromol 2024; 254:127874. [PMID: 37939760 DOI: 10.1016/j.ijbiomac.2023.127874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
The Orange Carotenoid Protein (OCP) is a unique photoreceptor crucial for cyanobacterial photoprotection. Best studied Synechocystis sp. PCC 6803 OCP belongs to the large OCP1 family. Downregulated by the Fluorescence Recovery Protein (FRP) in low-light, high-light-activated OCP1 binds to the phycobilisomes and performs non-photochemical quenching. Recently discovered families OCP2 and OCP3 remain structurally and functionally underexplored, and no systematic comparative studies have ever been conducted. Here we present two first crystal structures of OCP2 from morphoecophysiologically different cyanobacteria and provide their comprehensive structural, spectroscopic and functional comparison with OCP1, the recently described OCP3 and all-OCP ancestor. Structures enable correlation of spectroscopic signatures with the effective number of hydrogen and discovered here chalcogen bonds anchoring the ketocarotenoid in OCP, as well as with the rotation of the echinenone's β-ionone ring in the CTD. Structural data also helped rationalize the observed differences in OCP/FRP and OCP/phycobilisome functional interactions. These data are expected to foster OCP research and applications in optogenetics, targeted carotenoid delivery and cyanobacterial biomass engineering.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Antonina Y Bukhanko
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy V Tsoraev
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Maria G Khrenova
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; Lomonosov Moscow State University, Chemistry Department, Moscow 119991, Russia
| | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemistry and Chemical Engineering, Qingdao 266580, People's Republic of China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China.
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| |
Collapse
|
2
|
Tsoraev GV, Bukhanko A, Budylin GS, Shirshin EA, Slonimskiy YB, Sluchanko NN, Kloz M, Cherepanov DA, Shakina YV, Ge B, Moldenhauer M, Friedrich T, Golub M, Pieper J, Maksimov EG, Rubin AB. Stages of OCP-FRP Interactions in the Regulation of Photoprotection in Cyanobacteria, Part 1: Time-Resolved Spectroscopy. J Phys Chem B 2023; 127:1890-1900. [PMID: 36799909 DOI: 10.1021/acs.jpcb.2c07189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Most cyanobacteria utilize a water-soluble Orange Carotenoid Protein (OCP) to protect their light-harvesting complexes from photodamage. The Fluorescence Recovery Protein (FRP) is used to restore photosynthetic activity by inactivating OCP via dynamic OCP-FRP interactions, a multistage process that remains underexplored. In this work, applying time-resolved spectroscopy, we demonstrate that the interaction of FRP with the photoactivated OCP begins early in the photocycle. Interacting with the compact OCP state, FRP completely prevents the possibility of OCP domain separation and formation of the signaling state capable of interacting with the antenna. The structural element that prevents FRP binding and formation of the complex is the short α-helix at the beginning of the N-terminal domain of OCP, which masks the primary site in the C-terminal domain of OCP. We determined the rate of opening of this site and show that it remains exposed long after the relaxation of the red OCP states. Observations of the OCP transitions on the ms time scale revealed that the relaxation of the orange photocycle intermediates is accompanied by an increase in the interaction of the carotenoid keto group with the hydrogen bond donor tyrosine-201. Our data refine the current model of photoinduced OCP transitions and the interaction of its intermediates with FRP.
Collapse
Affiliation(s)
- Georgy V Tsoraev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Antonina Bukhanko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Gleb S Budylin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.,Laboratory of Clinical Biophotonics, Scientific and Technological Biomedical Park, Sechenov University, 119435 Moscow, Russia
| | - Evgeny A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Miroslav Kloz
- ELI-Beamlines, Institute of Physics, Dolní Břežany, 252 41 Czech Republic
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432 Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | | | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC14, 10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC14, 10623 Berlin, Germany
| | - Maksym Golub
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Jörg Pieper
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Andrew B Rubin
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
3
|
Wilson A, Andreeva EA, Niziński S, Talbot L, Hartmann E, Schlichting I, Burdzinski G, Sliwa M, Kirilovsky D, Colletier JP. Structure-function-dynamics relationships in the peculiar Planktothrix PCC7805 OCP1: Impact of his-tagging and carotenoid type. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148584. [PMID: 35752265 DOI: 10.1016/j.bbabio.2022.148584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCP studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and identify the time scales on which these modifications affect photoactivation. The presence of a his-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.
Collapse
Affiliation(s)
- Adjélé Wilson
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Elena A Andreeva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France; Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Stanisław Niziński
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France; Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | - Léa Talbot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Elisabeth Hartmann
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gotard Burdzinski
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France.
| | - Diana Kirilovsky
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
4
|
Slonimskiy YB, Zupnik AO, Varfolomeeva LA, Boyko KM, Maksimov EG, Sluchanko NN. A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects. Int J Biol Macromol 2022; 222:167-180. [PMID: 36165868 DOI: 10.1016/j.ijbiomac.2022.09.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades - OCP3a, OCP3b, OCP3c.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Andrei O Zupnik
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation.
| |
Collapse
|
5
|
Slonimskiy YB, Egorkin NA, Friedrich T, Maksimov EG, Sluchanko NN. Microalgal protein AstaP is a potent carotenoid solubilizer and delivery module with a broad carotenoid binding repertoire. FEBS J 2021; 289:999-1022. [PMID: 34582628 DOI: 10.1111/febs.16215] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Carotenoids are lipophilic substances with many biological functions, from coloration to photoprotection. Being potent antioxidants, carotenoids have multiple biomedical applications, including the treatment of neurodegenerative disorders and retina degeneration. Nevertheless, the delivery of carotenoids is substantially limited by their poor solubility in the aqueous phase. Natural water-soluble carotenoproteins can facilitate this task, necessitating studies on their ability to uptake and deliver carotenoids. One such promising carotenoprotein, AstaP (astaxanthin-binding protein), was recently identified in eukaryotic microalgae, but its structure and functional properties remained largely uncharacterized. By using a correctly folded recombinant protein, here we show that AstaP is an efficient carotenoid solubilizer that can stably bind not only astaxanthin but also zeaxanthin, canthaxanthin, and, to a lesser extent, β-carotene, that is, carotenoids especially valuable to human health. AstaP accepts carotenoids provided as acetone solutions or embedded in membranes, forming carotenoid-protein complexes with an apparent stoichiometry of 1:1. We successfully produced AstaP holoproteins in specific carotenoid-producing strains of Escherichia coli, proving it is amenable to cost-efficient biotechnology processes. Regardless of the carotenoid type, AstaP remains monomeric in both apo- and holoform, while its rather minimalistic mass (~ 20 kDa) makes it an especially attractive antioxidant delivery module. In vitro, AstaP transfers different carotenoids to liposomes and to unrelated proteins from cyanobacteria, which can modulate their photoactivity and/or oligomerization. These findings expand the toolkit of the characterized carotenoid binding proteins and outline the perspective of the use of AstaP as a unique monomeric antioxidant nanocarrier with an extensive carotenoid binding repertoire.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Berlin, Germany
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
6
|
Yaroshevich IA, Maksimov EG, Sluchanko NN, Zlenko DV, Stepanov AV, Slutskaya EA, Slonimskiy YB, Botnarevskii VS, Remeeva A, Gushchin I, Kovalev K, Gordeliy VI, Shelaev IV, Gostev FE, Khakhulin D, Poddubnyy VV, Gostev TS, Cherepanov DA, Polívka T, Kloz M, Friedrich T, Paschenko VZ, Nadtochenko VA, Rubin AB, Kirpichnikov MP. Role of hydrogen bond alternation and charge transfer states in photoactivation of the Orange Carotenoid Protein. Commun Biol 2021; 4:539. [PMID: 33972665 PMCID: PMC8110590 DOI: 10.1038/s42003-021-02022-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we propose a possible photoactivation mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP), suggesting that the reaction involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. Taking advantage of engineering an OCP variant carrying the Y201W mutation, which shows superior spectroscopic and structural properties, it is shown that the presence of Trp201 augments the impact of one critical H-bond between the ketocarotenoid and the protein. This confers an unprecedented homogeneity of the dark-adapted OCP state and substantially increases the yield of the excited photoproduct S*, which is important for the productive photocycle to proceed. A 1.37 Å crystal structure of OCP Y201W combined with femtosecond time-resolved absorption spectroscopy, kinetic analysis, and deconvolution of the spectral intermediates, as well as extensive quantum chemical calculations incorporating the effect of the local electric field, highlighted the role of charge-transfer states during OCP photoconversion. Yaroshevich et al. present a chemical reaction mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP). They find that photoactivation critically involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. This study suggests the role of charge-transfer states during OCP photoconversion.
Collapse
Affiliation(s)
- Igor A Yaroshevich
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia. .,A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey V Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Slutskaya
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury B Slonimskiy
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Viacheslav S Botnarevskii
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.,Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Timofey S Gostev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Kloz
- ELI-Beamlines, Institute of Physics, Praha, Czech Republic
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC14, Berlin, Germany
| | | | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Andrew B Rubin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Maksimov EG, Protasova EA, Tsoraev GV, Yaroshevich IA, Maydykovskiy AI, Shirshin EA, Gostev TS, Jelzow A, Moldenhauer M, Slonimskiy YB, Sluchanko NN, Friedrich T. Probing of carotenoid-tryptophan hydrogen bonding dynamics in the single-tryptophan photoactive Orange Carotenoid Protein. Sci Rep 2020; 10:11729. [PMID: 32678150 PMCID: PMC7366913 DOI: 10.1038/s41598-020-68463-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
The photoactive Orange Carotenoid Protein (OCP) plays a key role in cyanobacterial photoprotection. In OCP, a single non-covalently bound keto-carotenoid molecule acts as a light intensity sensor, while the protein is responsible for forming molecular contacts with the light-harvesting antenna, the fluorescence of which is quenched by OCP. Activation of this physiological interaction requires signal transduction from the photoexcited carotenoid to the protein matrix. Recent works revealed an asynchrony between conformational transitions of the carotenoid and the protein. Intrinsic tryptophan (Trp) fluorescence has provided valuable information about the protein part of OCP during its photocycle. However, wild-type OCP contains five Trp residues, which makes extraction of site-specific information impossible. In this work, we overcame this problem by characterizing the photocycle of a fully photoactive OCP variant (OCP-3FH) with only the most critical tryptophan residue (Trp-288) in place. Trp-288 is of special interest because it forms a hydrogen bond to the carotenoid's keto-oxygen to keep OCP in its dark-adapted state. Using femtosecond pump-probe fluorescence spectroscopy we analyzed the photocycle of OCP-3FH and determined the formation rate of the very first intermediate suggesting that generation of the recently discovered S* state of the carotenoid in OCP precedes the breakage of the hydrogen bonds. Therefore, following Trp fluorescence of the unique photoactive OCP-3FH variant, we identified the rate of the H-bond breakage and provided novel insights into early events accompanying photoactivation of wild-type OCP.
Collapse
Affiliation(s)
- Eugene G. Maksimov
- 0000 0001 2342 9668grid.14476.30Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia ,0000 0004 0468 2555grid.425156.1A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elena A. Protasova
- 0000 0001 2342 9668grid.14476.30Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Georgy V. Tsoraev
- 0000 0001 2342 9668grid.14476.30Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor A. Yaroshevich
- 0000 0001 2342 9668grid.14476.30Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anton I. Maydykovskiy
- 0000 0001 2342 9668grid.14476.30Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Evgeny A. Shirshin
- 0000 0001 2342 9668grid.14476.30Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Timofey S. Gostev
- 0000 0001 2342 9668grid.14476.30Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Marcus Moldenhauer
- 0000 0001 2292 8254grid.6734.6Technical University of Berlin, Institute of Chemistry PC 14, Straße des des 17. Juni 135, 10623 Berlin, Germany
| | - Yury B. Slonimskiy
- 0000 0004 0468 2555grid.425156.1A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Nikolai N. Sluchanko
- 0000 0001 2342 9668grid.14476.30Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia ,0000 0004 0468 2555grid.425156.1A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Thomas Friedrich
- 0000 0001 2292 8254grid.6734.6Technical University of Berlin, Institute of Chemistry PC 14, Straße des des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
8
|
Slonimskiy YB, Maksimov EG, Sluchanko NN. Fluorescence recovery protein: a powerful yet underexplored regulator of photoprotection in cyanobacteria†. Photochem Photobiol Sci 2020; 19:763-775. [PMID: 33856677 DOI: 10.1039/d0pp00015a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023]
Abstract
Cyanobacteria utilize an elegant photoprotection mechanism mediated by the photoactive Orange Carotenoid Protein (OCP), which upon binding dissipates excess energy from light-harvesting complexes, phycobilisomes. The OCP activity is efficiently regulated by its partner, the Fluorescence Recovery Protein (FRP). FRP accelerates OCP conversion to the resting state, thus counteracting the OCP-mediated photoprotection. Behind the deceptive simplicity of such regulation is hidden a multistep process involving dramatic conformational rearrangements in OCP and FRP, the details of which became clearer only a decade after the FRP discovery. Yet many questions regarding the functioning of FRP have remained controversial. In this review, we summarize the current knowledge and understanding of the FRP role in cyanobacterial photoprotection as well as its evolutionary history that presumably lies far beyond cyanobacteria.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Biochemistry, Faculty of Biology, 119991, Moscow, Russian Federation
| | - Eugene G Maksimov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, 119991, Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation.
- M. V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, 119991, Moscow, Russian Federation.
| |
Collapse
|