1
|
Li Z, Zhou C, Zhao S, Zhang J, Liu X, Sang M, Qin X, Yang Y, Han G, Kuang T, Shen JR, Wang W. Structural and functional properties of different types of siphonous LHCII trimers from an intertidal green alga Bryopsis corticulans. Structure 2023; 31:1247-1258.e3. [PMID: 37633266 DOI: 10.1016/j.str.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Light-harvesting complexes of photosystem II (LHCIIs) in green algae and plants are vital antenna apparatus for light harvesting, energy transfer, and photoprotection. Here we determined the structure of a siphonous-type LHCII trimer from the intertidal green alga Bryopsis corticulans by X-ray crystallography and cryo-electron microscopy (cryo-EM), and analyzed its functional properties by spectral analysis. The Bryopsis LHCII (Bry-LHCII) structures in both homotrimeric and heterotrimeric form show that green light-absorbing siphonaxanthin and siphonein occupied the sites of lutein and violaxanthin in plant LHCII, and two extra chlorophylls (Chls) b replaced Chls a. Binding of these pigments expands the blue-green light absorption of B. corticulans in the tidal zone. We observed differences between the Bry-LHCII homotrimer crystal and cryo-EM structures, and also between Bry-LHCII homotrimer and heterotrimer cryo-EM structures. These conformational changes may reflect the flexibility of Bry-LHCII, which may be required to adapt to light fluctuations from tidal rhythms.
Collapse
Affiliation(s)
- Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Cuicui Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinyang Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xueyang Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Science, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Min Sang
- China National Botanical Garden, Beijing 100093, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
2
|
Li DH, Wang W, Zhou C, Zhang Y, Zhao S, Zhou YM, Gao RY, Yao HD, Fu LM, Wang P, Shen JR, Kuang T, Zhang JP. Photoinduced chlorophyll charge transfer state identified in the light-harvesting complex II from a marine green alga Bryopsis corticulans. iScience 2022; 26:105761. [PMID: 36594012 PMCID: PMC9804108 DOI: 10.1016/j.isci.2022.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
The light-harvesting complex II of Bryopsis corticulans (B-LHCII), a green alga, differs from that of spinach (S-LHCII) in chlorophyll (Chl) and carotenoid (Car) compositions. We investigated ultrafast excitation dynamics of B-LHCII with visible-to-near infrared time-resolved absorption spectroscopy. Absolute fluorescence quantum yield (Φ FL) of LHCII and spectroelectrochemical (SEC) spectra of Chl a and b were measured to assist the spectral analysis. Red-light excitation at Chl Qy-band, but not Car-band, induced transient features resembling the characteristic SEC spectra of Chl a ⋅+ and Chl b ⋅-, indicating ultrafast photogeneration of Chl-Chl charge transfer (CT) species; Φ FL and 3Car∗ declined whereas CT species increased upon prolonging excitation wavelength, showing positive correlation of 1Chl∗ deactivation with Chl-Chl CT formation. Moreover, ultrafast Chl b-to-Chl a and Car-to-Chl singlet excitation transfer were illustrated. The red-light induction of Chl-Chl CT species, as also observed for S-LHCII, is considered a general occurrence for LHCIIs in light-harvesting form.
Collapse
Affiliation(s)
- Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China,School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Wenda Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cuicui Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Songhao Zhao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi-Ming Zhou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Hai-Dan Yao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Li-Min Fu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China,Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China,Corresponding author
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China,Corresponding author
| |
Collapse
|
3
|
Yao HD, Li DH, Gao RY, Zhou C, Wang W, Wang P, Shen JR, Kuang T, Zhang JP. A Possible Mechanism for Aggregation-Induced Chlorophyll Fluorescence Quenching in Light-Harvesting Complex II from the Marine Green Alga Bryopsis corticulans. J Phys Chem B 2022; 126:9580-9590. [PMID: 36356234 DOI: 10.1021/acs.jpcb.2c05823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
The light-harvesting complex II of a green alga Bryopsis corticulans (B-LHCII) is peculiar in that it contains siphonein and siphonaxathin as carotenoid (Car). Since the S1 state of siphonein and siphonaxathin lies substantially higher than the Qy state of chlorophyll a (Chl a), the Chl a(Qy)-to-Car(S1) excitation energy transfer is unfeasible. To understand the photoprotective mechanism of algal photosynthesis, we investigated the influence of temperature on the excitation dynamics of B-LHCII in trimeric and aggregated forms. At room temperature, the aggregated form showed a 10-fold decrease in fluorescence intensity and lifetime than the trimeric form. Upon lowering the temperature, the characteristic 680 nm fluorescence (F-680) of B-LHCII in both forms exhibited systematic intensity enhancement and spectral narrowing; however, only the aggregated form showed a red emission extending over 690-780 nm (F-RE) with pronounced blueshift, lifetime prolongation, and intensity boost. The remarkable T-dependence of F-RE is ascribed to the Chl-Chl charge transfer (CT) species involved directly in the aggregation-induced Chl deactivation. The CT-quenching mechanism, which is considered to be crucial for B. corticulans photoprotection, draws strong support from the positive correlation of the Chl deactivation rate with the CT state population, as revealed by comparing the fluorescence dynamics of B-LHCII with that of the plant LHCII.
Collapse
Affiliation(s)
- Hai-Dan Yao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Cuicui Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Wenda Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China.,Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| |
Collapse
|
4
|
Nguyen HL, Do TN, Akhtar P, Jansen TLC, Knoester J, Wang W, Shen JR, Lambrev PH, Tan HS. An Exciton Dynamics Model of Bryopsis corticulans Light-Harvesting Complex II. J Phys Chem B 2021; 125:1134-1143. [PMID: 33478222 DOI: 10.1021/acs.jpcb.0c10634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Bryopsis corticulans is a marine green macroalga adapted to the intertidal environment. It possesses siphonaxanthin-binding light-harvesting complexes of photosystem II (LHCII) with spectroscopic properties markedly different from the LHCII in plants. By applying a phenomenological fitting procedure to the two-dimensional electronic spectra of the LHCII from B. corticulans measured at 77 K, we can extract information about the excitonic states and energy-transfer processes. The fitting method results in well-converged parameters, including excitonic energy levels with their respective transition dipole moments, spectral widths, energy-transfer rates, and coupling properties. The 2D spectra simulated from the fitted parameters concur very well with the experimental data, showing the robustness of the fitting method. An excitonic energy-transfer scheme can be constructed from the fitting parameters. It shows the rapid energy transfer from chlorophylls (Chls) b to a at subpicosecond time scales and a long-lived state in the Chl b region at around 659 nm. Three weakly connected terminal states are resolved at 671, 675, and 677 nm. The lowest state is higher in energy than that in plant LHCII, which is probably because of the fewer number of Chls a in a B. corticulans LHCII monomer. Modeling based on existing Hamiltonians for the plant LHCII structure with two Chls a switched to Chls b suggests several possible Chl a-b replacements in comparison with those of plant LHCII. The adaptive changes result in a slower energy equilibration in the complex, revealed by the longer relaxation times of several exciton states compared to those of plant LHCII. The strength of our phenomenological fitting method for obtaining excitonic energy levels and energy-transfer network is put to the test in systems such as B. corticulans LHCII, where prior knowledge on exact assignment and spatial locations of pigments are lacking.
Collapse
Affiliation(s)
- Hoang Long Nguyen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.,University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thanh Nhut Do
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Parveen Akhtar
- Biological Research Center, Szeged, Temesvári Körút 62, Szeged 6726, Hungary.,ELI-ALPS, ELI-HU Nonprofit Ltd., Budapesti út 5, Szeged 6728, Hungary
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China.,Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8350, Japan
| | - Petar H Lambrev
- Biological Research Center, Szeged, Temesvári Körút 62, Szeged 6726, Hungary
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|