1
|
Brischigliaro M, Sierra‐Magro A, Ahn A, Barrientos A. Mitochondrial ribosome biogenesis and redox sensing. FEBS Open Bio 2024; 14:1640-1655. [PMID: 38849194 PMCID: PMC11452305 DOI: 10.1002/2211-5463.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mitoribosome biogenesis is a complex process involving RNA elements encoded in the mitochondrial genome and mitoribosomal proteins typically encoded in the nuclear genome. This process is orchestrated by extra-ribosomal proteins, nucleus-encoded assembly factors, which play roles across all assembly stages to coordinate ribosomal RNA processing and maturation with the sequential association of ribosomal proteins. Both biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided insights into their assembly process. In this article, we will briefly outline the current understanding of mammalian mitoribosome biogenesis pathways and the factors involved. Special attention is devoted to the recent identification of iron-sulfur clusters as structural components of the mitoribosome and a small subunit assembly factor, the existence of redox-sensitive cysteines in mitoribosome proteins and assembly factors, and the role they may play as redox sensor units to regulate mitochondrial translation under stress.
Collapse
Affiliation(s)
| | - Ana Sierra‐Magro
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
| | - Ahram Ahn
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
| | - Antoni Barrientos
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
- Bruce W. Carter Department of Veterans Affairs VA Medical CenterMiamiFLUSA
| |
Collapse
|
2
|
Bertgen L, Bökenkamp JE, Schneckmann T, Koch C, Räschle M, Storchová Z, Herrmann JM. Distinct types of intramitochondrial protein aggregates protect mitochondria against proteotoxic stress. Cell Rep 2024; 43:114018. [PMID: 38551959 DOI: 10.1016/j.celrep.2024.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Mitochondria consist of hundreds of proteins, most of which are inaccessible to the proteasomal quality control system of the cytosol. How cells stabilize the mitochondrial proteome during challenging conditions remains poorly understood. Here, we show that mitochondria form spatially defined protein aggregates as a stress-protecting mechanism. Two different types of intramitochondrial protein aggregates can be distinguished. The mitoribosomal protein Var1 (uS3m) undergoes a stress-induced transition from a soluble, chaperone-stabilized protein that is prevalent under benign conditions to an insoluble, aggregated form upon acute stress. The formation of Var1 bodies stabilizes mitochondrial proteostasis, presumably by sequestration of aggregation-prone proteins. The AAA chaperone Hsp78 is part of a second type of intramitochondrial aggregate that transiently sequesters proteins and promotes their folding or Pim1-mediated degradation. Thus, mitochondrial proteins actively control the formation of distinct types of intramitochondrial protein aggregates, which cooperate to stabilize the mitochondrial proteome during proteotoxic stress conditions.
Collapse
Affiliation(s)
- Lea Bertgen
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Jan-Eric Bökenkamp
- Molecular Genetics, University of Kaiserslautern, RPTU, Paul-Ehrlich-Strasse 24, 67663 Kaiserslautern, Germany
| | - Tim Schneckmann
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Christian Koch
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, RPTU, Paul-Ehrlich-Strasse 24, 67663 Kaiserslautern, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, RPTU, Paul-Ehrlich-Strasse 24, 67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, RPTU, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany.
| |
Collapse
|
3
|
Moretti-Horten DN, Peselj C, Taskin AA, Myketin L, Schulte U, Einsle O, Drepper F, Luzarowski M, Vögtle FN. Synchronized assembly of the oxidative phosphorylation system controls mitochondrial respiration in yeast. Dev Cell 2024; 59:1043-1057.e8. [PMID: 38508182 DOI: 10.1016/j.devcel.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Control of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown. We identify the Mitochondrial Regulatory hub for respiratory Assembly (MiRA) platform, which synchronizes ETC and ATP synthase biogenesis in yeast. Molecularly, this is achieved by a stop-and-go mechanism: the uncharacterized protein Mra1 stalls complex IV assembly. Two "Go" signals are required for assembly progression: binding of the complex IV assembly factor Rcf2 and Mra1 interaction with an Atp9-translating mitoribosome induce Mra1 degradation, allowing synchronized maturation of complex IV and the ATP synthase. Failure of the stop-and-go mechanism results in cell death. MiRA controls OXPHOS assembly, ensuring correct stoichiometry of protein machineries encoded by two different genomes.
Collapse
Affiliation(s)
- Daiana N Moretti-Horten
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Carlotta Peselj
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Biochemistry & Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Network Aging Research, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Evolutionary inference across eukaryotes identifies universal features shaping organelle gene retention. Cell Syst 2022; 13:874-884.e5. [PMID: 36115336 DOI: 10.1016/j.cels.2022.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Mitochondria and plastids power complex life. Why some genes and not others are retained in their organelle DNA (oDNA) genomes remains a debated question. Here, we attempt to identify the properties of genes and associated underlying mechanisms that determine oDNA retention. We harness over 15k oDNA sequences and over 300 whole genome sequences across eukaryotes with tools from structural biology, bioinformatics, machine learning, and Bayesian model selection. Previously hypothesized features, including the hydrophobicity of a protein product, and less well-known features, including binding energy centrality within a protein complex, predict oDNA retention across eukaryotes, with additional influences of nucleic acid and amino acid biochemistry. Notably, the same features predict retention in both organelles, and retention models learned from one organelle type quantitatively predict retention in the other, supporting the universality of these features-which also distinguish gene profiles in more recent, independent endosymbiotic relationships. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
|
5
|
Bykov YS, Flohr T, Boos F, Zung N, Herrmann JM, Schuldiner M. Widespread use of unconventional targeting signals in mitochondrial ribosome proteins. EMBO J 2022; 41:e109519. [PMID: 34786732 PMCID: PMC8724765 DOI: 10.15252/embj.2021109519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial ribosomes are complex molecular machines indispensable for respiration. Their assembly involves the import of several dozens of mitochondrial ribosomal proteins (MRPs), encoded in the nuclear genome, into the mitochondrial matrix. Proteomic and structural data as well as computational predictions indicate that up to 25% of yeast MRPs do not have a conventional N-terminal mitochondrial targeting signal (MTS). We experimentally characterized a set of 15 yeast MRPs in vivo and found that five use internal MTSs. Further analysis of a conserved model MRP, Mrp17/bS6m, revealed the identity of the internal targeting signal. Similar to conventional MTS-containing proteins, the internal sequence mediates binding to TOM complexes. The entire sequence of Mrp17 contains positive charges mediating translocation. The fact that these sequence properties could not be reliably predicted by standard methods shows that mitochondrial protein targeting is more versatile than expected. We hypothesize that structural constraints imposed by ribosome assembly interfaces may have disfavored N-terminal presequences and driven the evolution of internal targeting signals in MRPs.
Collapse
Affiliation(s)
- Yury S Bykov
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Tamara Flohr
- Division of Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Felix Boos
- Division of Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Department of GeneticsStanford UniversityStanfordCAUSA
| | - Naama Zung
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | | | - Maya Schuldiner
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
6
|
Koch C, Schuldiner M, Herrmann JM. ER-SURF: Riding the Endoplasmic Reticulum Surface to Mitochondria. Int J Mol Sci 2021; 22:9655. [PMID: 34502567 PMCID: PMC8432098 DOI: 10.3390/ijms22179655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023] Open
Abstract
Most mitochondrial proteins are synthesized in the cytosol and targeted to the mitochondrial surface in a post-translational manner. The surface of the endoplasmic reticulum (ER) plays an active role in this targeting reaction. ER-associated chaperones interact with certain mitochondrial membrane protein precursors and transfer them onto receptor proteins of the mitochondrial surface in a process termed ER-SURF. ATP-driven proteins in the membranes of mitochondria (Msp1, ATAD1) and the ER (Spf1, P5A-ATPase) serve as extractors for the removal of mislocalized proteins. If the re-routing to mitochondria fails, precursors can be degraded by ER or mitochondria-associated degradation (ERAD or MAD respectively) in a proteasome-mediated reaction. This review summarizes the current knowledge about the cooperation of the ER and mitochondria in the targeting and quality control of mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | | |
Collapse
|
7
|
Ferrari A, Del'Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett 2020; 595:1025-1061. [PMID: 33314036 DOI: 10.1002/1873-3468.14024] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria control life and death in eukaryotic cells. Harboring a unique circular genome, a by-product of an ancient endosymbiotic event, mitochondria maintains a specialized and evolutionary divergent protein synthesis machinery, the mitoribosome. Mitoribosome biogenesis depends on elements encoded in both the mitochondrial genome (the RNA components) and the nuclear genome (all ribosomal proteins and assembly factors). Recent cryo-EM structures of mammalian mitoribosomes have illuminated their composition and provided hints regarding their assembly and elusive mitochondrial translation mechanisms. A growing body of literature involves the mitoribosome in inherited primary mitochondrial disorders. Mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors impede mitoribosome biogenesis, causing protein synthesis defects that lead to respiratory chain failure and mitochondrial disorders such as encephalo- and cardiomyopathy, deafness, neuropathy, and developmental delays. In this article, we review the current fundamental understanding of mitoribosome assembly and function, and the clinical landscape of mitochondrial disorders driven by mutations in mitoribosome components and assembly factors, to portray how basic and clinical studies combined help us better understand both mitochondrial biology and medicine.
Collapse
Affiliation(s)
- Alberto Ferrari
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| | - Samuel Del'Olio
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
8
|
Krämer L, Groh C, Herrmann JM. The proteasome: friend and foe of mitochondrial biogenesis. FEBS Lett 2020; 595:1223-1238. [PMID: 33249599 DOI: 10.1002/1873-3468.14010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 01/06/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and subsequently translocated as unfolded polypeptides into mitochondria. Cytosolic chaperones maintain precursor proteins in an import-competent state. This post-translational import reaction is under surveillance of the cytosolic ubiquitin-proteasome system, which carries out several distinguishable activities. On the one hand, the proteasome degrades nonproductive protein precursors from the cytosol and nucleus, import intermediates that are stuck in mitochondrial translocases, and misfolded or damaged proteins from the outer membrane and the intermembrane space. These surveillance activities of the proteasome are essential for mitochondrial functionality, as well as cellular fitness and survival. On the other hand, the proteasome competes with mitochondria for nonimported cytosolic precursor proteins, which can compromise mitochondrial biogenesis. In order to balance the positive and negative effects of the cytosolic protein quality control system on mitochondria, mitochondrial import efficiency directly regulates the capacity of the proteasome via transcription factor Rpn4 in yeast and nuclear respiratory factor (Nrf) 1 and 2 in animal cells. In this review, we provide a thorough overview of how the proteasome regulates mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lena Krämer
- Cell Biology, University of Kaiserslautern, Germany
| | - Carina Groh
- Cell Biology, University of Kaiserslautern, Germany
| | | |
Collapse
|