1
|
Huang X, Ni B, Li Q, Liu M, Zhao M, Zhang Y, Shi X, Wang W. Association between Postmenopausal Osteoporosis and IL-6、TNF-α: A Systematic Review and A Meta-analysis. Comb Chem High Throughput Screen 2024; 27:2260-2266. [PMID: 38275059 DOI: 10.2174/0113862073262645231121025911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) greatly increases the risk of bone fracture in postmenopausal women, seriously affects the quality of life of patients, and is an important global public health problem. Persistent chronic systemic inflammation may be involved in the change process of PMOP, and many cytokines, such as TNF-alpha and Interleukin-6, play an important role in the inflammatory response. Therefore, This study takes commonly representative inflammatory factors as indicators to better determine their role in PMOP patients by means of databases from multiple studies for use in Meta-analysis. Method: Systematic review of studies on the relationship between PMOP and markers of inflammation: interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). Each effect size was expressed with a 95% confidence interval (CI), and I2 quantified the heterogeneity. The final results were aggregated and evaluated using random or fixed effects models. Results: Twenty-one original studies were identified. There were twenty studies involving IL-6 and eleven involving TNF-α. Overall, The levels of IL-6 [MD=23.93, 95% CI (19.65, 28.21)] and TNF-α [MD=2.9, 95% CI (2.37, 3.44)] were increased in PMOP patients compared with postmenopausal women without osteoporosis; The levels of IL-6 [MD=42.4, 95% CI (38.62, 46.19)] and TNF-α [MD=0.40, 95% CI (0.36, 0.44)] were significantly higher than those of premenopausal healthy women. Conclusions: The levels of inflammatory cytokines IL-6 and TNF-α were significantly increased in PMOP patients compared with controls, suggesting that persistent chronic inflammatory reaction exists in PMOP patients, which may be an important cause of aggravated osteoporosis in postmenopausal women. Therefore, the level of IL-6 and TNF-α indexes may be of great significance for the early prevention, diagnosis, treatment and prognosis assessment of PMOP.
Collapse
Affiliation(s)
- Xudong Huang
- The Second Clinical School of Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Baihe Ni
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qi Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meichen Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghua Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanqi Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaolin Shi
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Weiguo Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Liu X, Chen M, Liu Q, Li G, Yang P, Zhang G. LncRNA PTCSC3 is upregulated in osteoporosis and negatively regulates osteoblast apoptosis. BMC Med Genomics 2022; 15:57. [PMID: 35296322 PMCID: PMC8925152 DOI: 10.1186/s12920-022-01182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND It is known that long non-coding RNA (lncRNA) PTCSC3 is involved in thyroid cancer and glioma, but its function in osteoporosis is unknown. The aim of our study was to investigate the role of lncRNA PTCSC3 in osteoporosis. METHODS A total of 80 patients with osteoporosis (4 clinical stages) and four corresponding groups of healthy controls were enrolled. Plasma PTCSC3 levels in the 80 osteoporosis patients and 80 healthy volunteers were measured using RT-qPCR. The diagnostic potential of plasma PTCSC3 for osteoporosis was evaluated by ROC curve analysis with healthy volunteers as the true negative cases and corresponding osteoporosis patients as the true positive cases. RESULTS PTCSC3 was upregulated in osteoporosis patients compared with healthy controls. PTCSC3 levels increased with osteoporosis stages increasing, but not with healthy controls aging. PTCSC3 overexpression separated each stage of osteoporosis from corresponding controls. PTCSC3 overexpression promoted while PTCSC3 silencing inhibited osteoblast apoptosis. However, PTCSC3 overexpression and silencing showed no significant effect on osteoclast apoptosis. LncRNA PTCSC3 was upregulated in osteoporosis and negatively regulated osteoblast apoptosis. CONCLUSION LncRNA PTCSC3 may serve as a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Xingchao Liu
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| | - Mingliang Chen
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| | - Qinghe Liu
- Orthopedics Department, Beijing Chao-Yang Hospital, Capital Medical University, No 8 Gongtinan Road, Beijing, 100020, People's Republic of China.
| | - Gang Li
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| | - Pei Yang
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| | - Guodong Zhang
- Orthopedics Department, Hebei Yanda Hospital, Yanjiao Development Zone, Sanhe City, Langfang City, 065201, Hebei Province, People's Republic of China
| |
Collapse
|
3
|
Gan D, Xu X, Chen D, Feng P, Xu Z. Network Pharmacology-Based Pharmacological Mechanism of the Chinese Medicine Rhizoma drynariae Against Osteoporosis. Med Sci Monit 2019; 25:5700-5716. [PMID: 31368456 PMCID: PMC6688518 DOI: 10.12659/msm.915170] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rhizoma drynariae is the main traditional Chinese medicine used for the treatment of osteoporosis, but its anti-osteoporotic targeting mechanism has not been fully elucidated due to the complexity of its active ingredients. In this study, the pharmacological mechanism of action of Rhizoma drynariae against osteoporosis was studied by integrating pharmacological concepts. The pharmacokinetic characteristics of selected major active constituents of Rhizoma drynariae and the SMILES structural similarity were used to predict related targets. A literature search was conducted to identify known osteoporosis treatment targets, which were then combined with the predicted targets to construct the direct or indirect target interaction network map of Rhizoma drynariae against osteoporosis. Finally, data on the key targets of the interactions, ranked according to relevant node parameters obtained through pathway enrichment analysis and screening of key targets and active ingredients of Rhizoma drynariae, were used to perform molecular docking simulation. We screened 16 active ingredients of Rhizoma drynariae, and 7 key targets with direct or indirect effects with a high frequency were obtained. These main pathways were found to play important roles in the PI3k-akt signaling pathway, osteoclast differentiation, Wnt signaling pathway, and estrogen signaling pathway. Molecular docking showed that most active ingredients of Rhizoma drynariae had strong binding efficiency with key targets. Based on network pharmacology, we conclude that Rhizoma drynariae plays an anti-osteoporotic role by directly or indirectly targeting multiple major signaling pathways and influencing the proliferation and differentiation of multiple types of cells.
Collapse
Affiliation(s)
- Donghao Gan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Xiaowei Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Deqiang Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland).,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Peng Feng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland).,Department of Orthopaedics, Affilited Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| |
Collapse
|
4
|
Shan Y, Wang L, Li G, Shen G, Zhang P, Xu Y. Methylation of bone SOST impairs SP7, RUNX2, and ERα transactivation in patients with postmenopausal osteoporosis. Biochem Cell Biol 2019; 97:369-374. [PMID: 30257098 DOI: 10.1139/bcb-2018-0170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sclerostin (SOST), a glycoprotein predominantly secreted by bone tissue osteocytes, is an important regulator of bone formation, and loss of SOST results in Van Buchem disease. DNA methylation regulates SOST expression in human osteocytes, although the detailed underlying mechanisms remain unknown. In this study, we compared 12 patients with bone fractures and postmenopausal osteoporosis with eight patients without postmenopausal osteoporosis to understand the mechanisms via which SOST methylation affects osteoporosis. Serum and bone SOST expression was reduced in patients with osteoporosis. Bisulfite sequencing polymerase chain reaction revealed that the methylation rate was higher in patients with osteoporosis. We identified osterix (SP7), Runt-related transcription factor 2 (RUNX2), and estrogen receptor α (ERα) as candidate transcription factors activating SOST expression. Increased SOST methylation impaired the transactivation function of SP7, RUNX2, and ERα in MG-63 cells. AzadC treatment and SOST overexpression in MG-63 cells altered cell proliferation and apoptosis. Chromatin immunoprecipitation showed that higher methylation was associated with reduced SP7, RUNX2, and ERα binding to the SOST promoter in patients with osteoporosis. Our studies provide new insight into the role of SOST methylation in osteoporosis.
Collapse
Affiliation(s)
- Yu Shan
- a Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- b Department of Orthopedics, the First People's Hospital of Wujiang, Suzhou 215300, China
| | - Liang Wang
- a Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guangfei Li
- a Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guangsi Shen
- a Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Peng Zhang
- a Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Youjia Xu
- a Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
5
|
Isolated Compounds from Turpinia formosana Nakai Induce Ossification. Int J Mol Sci 2019; 20:ijms20133119. [PMID: 31247918 PMCID: PMC6651545 DOI: 10.3390/ijms20133119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
Bone metabolism is a homeostatic process, imbalance in which leads to the onset of diseases such as osteoporosis and osteopenia. Although several drugs are currently available to treat such conditions, they are associated with severe side effects and do not enhance bone formation. Thus, identifying alternative treatment strategies that focus on enhancing bone formation is essential. Herein, we explored the osteogenic potential of Turpinia formosana Nakai using human osteoblast (HOb) cells. The plant extract was subjected to various chromatographic techniques to obtain six compounds, including one new compound: 3,3′-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1). Compounds 3,3′-di-O-methylellagic acid-4-O-α-l-arabinofuranoside (1), gentisic acid 5-O-β-d-(6′-O-galloyl) glucopyranoside (2), strictinin (3), and (-)-epicatechin-3-O-β-d-allopyranoside (6) displayed no significant cytotoxicity toward HOb cells, and thus their effects on various osteogenic markers were analyzed. Results showed that 1–3 and 6 significantly increased alkaline phosphatase (ALP) activity up to 120.0, 121.3, 116.4, and 125.1%, respectively. Furthermore, 1, 2, and 6 also markedly enhanced the mineralization process with respective values of up to 136.4, 118.9, and 134.6%. In addition, the new compound, 1, significantly increased expression levels of estrogen receptor-α (133.4%) and osteogenesis-related genes of Runt-related transcription factor 2 (Runx2), osteopontin (OPN), bone morphogenetic protein (BMP)-2, bone sialoprotein (BSP), type I collagen (Col-1), and brain-derived neurotropic factor (BDNF) by at least 1.5-fold. Our results demonstrated that compounds isolated from T. formosana possess robust osteogenic potential, with the new compound, 1, also exhibiting the potential to enhance the bone formation process. We suggest that T. formosana and its isolated active compounds deserve further evaluation for development as anti-osteoporotic agents.
Collapse
|
6
|
Li X, Peng B, Zhu X, Wang P, Sun K, Lei X, He H, Tian Y, Mo S, Zhang R, Yang L. MiR-210-3p inhibits osteogenic differentiation and promotes adipogenic differentiation correlated with Wnt signaling in ERα-deficient rBMSCs. J Cell Physiol 2019; 234:23475-23484. [PMID: 31190372 DOI: 10.1002/jcp.28916] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) regulate activities in living organisms through various signaling pathways and play important roles in the development and progression of osteoporosis. The balance between osteogenic and adipogenic differentiation of rBMSCs is closely related to the occurrence of osteoporosis. ERα regulates bone metabolism in various tissues. However, the correlation among ERα, miRNAs, and the differentiation of rBMSCs is still unclear. In this study, we used lentivirus transfection into rBMSCs to construct an ERα-deficient model, analyzed the differences in expressed miRNAs between control and ERα-deficient rBMSCs. The results revealed that the expression of 25 miRNAs were upregulated, 164 miRNAs were downregulated, and some of the regulated miRNAs such as miR-210-3p and miR-214-3p were related to osteogenic or adipogenic differentiation, as well as to particular signaling pathways. Next, we overexpressed miR-210-3p to evaluate its effects on the osteogenic and adipogenic differentiation of rBMSCs, and identified the relationship among miR-210-3p, Wnt signaling pathway, and the differentiation of rBMSCs. The results indicated that ERα-deficient inhibited osteogenic differentiation, promoted adipogenic differentiation, and regulated the expression of some miRNAs. Meanwhile, overexpression of miR-210-3p promoted osteogenic differentiation and inhibited adipogenic differentiation of rBMSCs, processes likely to be related to the Wnt signaling pathway. In conclusion, we identified a group of upregulated and downregulated miRNAs in ERα-deficient rBMSCs that might play a vital role in regulating osteogenic or adipogenic differentiation. One of these, miR-210-3p, inhibited osteogenic differentiation and promoted adipogenic differentiation correlated with the Wnt signaling pathway in ERα-deficient rBMSCs, providing new insight into the regulation of bone metabolism.
Collapse
Affiliation(s)
- Xiaoyun Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Bojia Peng
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaofeng Zhu
- Department of the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Panpan Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kehuan Sun
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaotong Lei
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Haibin He
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ya Tian
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Shu Mo
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ronghua Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Li Yang
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Role of nutritional vitamin D in osteoporosis treatment. Clin Chim Acta 2018; 484:179-191. [PMID: 29782843 DOI: 10.1016/j.cca.2018.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Osteoporosis is a systemic skeletal disorder characterized by a decrease in bone mass and microarchitectural deterioration of bone tissue. The World Health Organization has defined osteoporosis as a decrease in bone mass (50%) and bony quality (50%). Vitamin D, a steroid hormone, is crucial for skeletal health and in mineral metabolism. Its direct action on osteoblasts and osteoclasts and interaction with nonskeletal tissues help in maintaining a balance between bone turnover and bone growth. Vitamin D affects the activity of osteoblasts, osteoclasts, and osteocytes, suggesting that it affects bone formation, bone resorption, and bone quality. At physiological concentrations, active vitamin D maintains a normal rate of bone resorption and formation through the RANKL/OPG signal. However, active vitamin D at pharmacological concentration inhibits bone resorption at a higher rate than that of bone formation, which influences the bone quality and quantity. Nutritional vitamin D rather than active vitamin D activates osteoblasts and maintains serum 25(OH)D3 concentration. Despite many unanswered questions, much data support nutritional vitamin D use in osteoporosis patients. This article emphasizes the role of nutritional vitamin D replacement in different turnover status (high or low bone turnover disorders) of osteoporosis together with either anti-resorptive (Bisphosphonate, Denosumab et.) or anabolic (Teriparatide) agents when osteoporosis persists.
Collapse
|