1
|
Zhang X, Li D, Zhu X, Wang Y, Zhu P. Structural characterization and cryo-electron tomography analysis of human islet amyloid polypeptide suggest a synchronous process of the hIAPP 1-37 amyloid fibrillation. Biochem Biophys Res Commun 2020; 533:125-131. [PMID: 32943189 DOI: 10.1016/j.bbrc.2020.08.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Revealing the aggregation and fibrillation process of variant amyloid proteins is critical for understanding the molecular mechanism of related amyloidosis diseases. Here we characterized the fibrillation morphology and kinetics of type 2 diabetes (T2D) related human islet amyloid polypeptide (hIAPP1-37) fibril formation process using negative staining transmission electron microscopy (NS-TEM), cryo-electron microscopy (cryo-EM) analysis, and 3D cryo-electron tomography (cryo-ET) reconstruction, together with circular dichroism (CD) and Thioflavin-T (ThT) assays. Our results showed that various amyloid fibrils can be observed at different time points of hIAPP1-37 fibrillization process, while the winding of protofibrils presents in different growth stages, which suggests a synchronous process of hIAPP1-37 amyloid fibrillization. This work provides insights into the understanding of hIAPP1-37 amyloid aggregation process and the pathogenesis of Type 2 diabetes disease.
Collapse
Affiliation(s)
- Xueli Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongyu Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xushan Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youwang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Cao Q, Boyer DR, Sawaya MR, Ge P, Eisenberg DS. Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat Struct Mol Biol 2020; 27:653-659. [PMID: 32541896 PMCID: PMC8579859 DOI: 10.1038/s41594-020-0435-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) functions as a glucose-regulating hormone but deposits as amyloid fibrils in more than 90% of patients with type II diabetes (T2D). Here we report the cryo-EM structure of recombinant full-length hIAPP fibrils. The fibril is composed of two symmetrically related protofilaments with ordered residues 14-37. Our hIAPP fibril structure (i) supports the previous hypothesis that residues 20-29 constitute the core of the hIAPP amyloid; (ii) suggests a molecular mechanism for the action of the hIAPP hereditary mutation S20G; (iii) explains why the six residue substitutions in rodent IAPP prevent aggregation; and (iv) suggests regions responsible for the observed hIAPP cross-seeding with β-amyloid. Furthermore, we performed structure-based inhibitor design to generate potential hIAPP aggregation inhibitors. Four of the designed peptides delay hIAPP aggregation in vitro, providing a starting point for the development of T2D therapeutics and proof of concept that the capping strategy can be used on full-length cryo-EM fibril structures.
Collapse
Affiliation(s)
- Qin Cao
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David R Boyer
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peng Ge
- California NanoSystem Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David S Eisenberg
- Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Krotee P, Rodriguez JA, Sawaya MR, Cascio D, Reyes FE, Shi D, Hattne J, Nannenga BL, Oskarsson ME, Philipp S, Griner S, Jiang L, Glabe CG, Westermark GT, Gonen T, Eisenberg DS. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. eLife 2017; 6. [PMID: 28045370 PMCID: PMC5207774 DOI: 10.7554/elife.19273] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/01/2016] [Indexed: 01/09/2023] Open
Abstract
hIAPP fibrils are associated with Type-II Diabetes, but the link of hIAPP structure to islet cell death remains elusive. Here we observe that hIAPP fibrils are cytotoxic to cultured pancreatic β-cells, leading us to determine the structure and cytotoxicity of protein segments composing the amyloid spine of hIAPP. Using the cryoEM method MicroED, we discover that one segment, 19-29 S20G, forms pairs of β-sheets mated by a dry interface that share structural features with and are similarly cytotoxic to full-length hIAPP fibrils. In contrast, a second segment, 15-25 WT, forms non-toxic labile β-sheets. These segments possess different structures and cytotoxic effects, however, both can seed full-length hIAPP, and cause hIAPP to take on the cytotoxic and structural features of that segment. These results suggest that protein segment structures represent polymorphs of their parent protein and that segment 19-29 S20G may serve as a model for the toxic spine of hIAPP.
Collapse
Affiliation(s)
- Pascal Krotee
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Jose A Rodriguez
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Michael R Sawaya
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Duilio Cascio
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Francis E Reyes
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Dan Shi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Johan Hattne
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brent L Nannenga
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Marie E Oskarsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stephan Philipp
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
| | - Sarah Griner
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| | - Lin Jiang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Brain Research Institute (BRI), University of California, Los Angeles, Los Angeles, United States
| | - Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States.,Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David S Eisenberg
- Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States.,UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
4
|
Watve M, Bodas A, Diwekar M. Altered autonomic inputs as a cause of pancreatic β-cell amyloid. Med Hypotheses 2013; 82:49-53. [PMID: 24321738 DOI: 10.1016/j.mehy.2013.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/03/2013] [Indexed: 01/09/2023]
Abstract
A partial loss of β-cell mass and β-cell dysfunction in Type 2 Diabetes Mellitus (T2DM) is associated with amyloid deposition but whether it is causal or consequential is debated. Although the in vitro polymerization of amylin has been studied in detail, the exact trigger for the mechanism in vivo has not been identified. One suggestion is that an increased load on β-cells results in inefficient handling of proteins leading to misfolding and aggregation, but this hypothesis is faced with certain paradoxes. We suggest an alternative mechanism based on the assumption that polymerization is a spontaneous process. The concentration of the polypeptide in β-cell granules is shown to be sufficient to allow polymerization. However if the rate of turnover in normal cells is greater than the rate of polymerization, amyloid deposition will not be observed. If this is true, it follows that amyloid deposition could be a result of increased retention time of amylin in the β-cell granules. In T2D, the sympathetic inputs are known to increase which could result in suppression of the secretion process. The increase in the retention time due to this suppression can allow polymerization. In addition to this in a prediabetic state parasympathetic stimulation increases β-cell proliferation. This reduces the insulin demand per cell thereby increasing the mean retention time. Thus a combination of contrasting actions of sympathetic and parasympathetic systems could lead to increase in the amyloid deposition. We suggest testable predictions of the alternative hypotheses and the lines of research needed to test them.
Collapse
Affiliation(s)
- Milind Watve
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Arushi Bodas
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Manawa Diwekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
5
|
Brender JR, Lee EL, Hartman K, Wong PT, Ramamoorthy A, Steel DG, Gafni A. Biphasic effects of insulin on islet amyloid polypeptide membrane disruption. Biophys J 2011; 100:685-692. [PMID: 21281583 PMCID: PMC3030259 DOI: 10.1016/j.bpj.2010.09.070] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/09/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022] Open
Abstract
Type II diabetes, in its late stages, is often associated with the formation of extracellular islet amyloid deposits composed of islet amyloid polypeptide (IAPP or amylin). IAPP is stored before secretion at millimolar concentrations within secretory granules inside the β-cells. Of interest, at these same concentrations in vitro, IAPP rapidly aggregates and forms fibrils, yet within secretory granules of healthy individuals, IAPP does not fibrillize. Insulin is also stored within the secretory granules before secretion, and has been shown in vitro to inhibit IAPP fibril formation. Because of insulin's inhibitory effect on IAPP fibrillization, it has been suggested that insulin may also inhibit IAPP-mediated permeabilization of the β-cell plasma membrane in vivo. We show that although insulin is effective at preventing fiber-dependent membrane disruption, it is not effective at stopping the initial phase of membrane disruption before fibrillogenesis, and does not prevent the formation of small IAPP oligomers on the membrane. These results suggest that insulin has a more complicated role in inhibiting IAPP fibrillogenesis, and that other factors, such as the low pH of the secretory granule, may also play a role.
Collapse
Affiliation(s)
- Jeffrey R Brender
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan; Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Edgar L Lee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Kevin Hartman
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan; Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Pamela T Wong
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Ayyalusamy Ramamoorthy
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan; Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Duncan G Steel
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan; Department of Physics, University of Michigan, Ann Arbor, Michigan
| | - Ari Gafni
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan; Department of Biophysics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
6
|
Abstract
Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Collapse
Affiliation(s)
- Inna Sekirov
- Michael Smith Laboratories, Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
7
|
Wiltzius JJW, Sievers SA, Sawaya MR, Eisenberg D. Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci 2009; 18:1521-30. [PMID: 19475663 PMCID: PMC2775219 DOI: 10.1002/pro.145] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Islet Amyloid Polypeptide (IAPP or amylin) is a peptide hormone produced and stored in the beta-islet cells of the pancreas along with insulin. IAPP readily forms amyloid fibrils in vitro, and the deposition of fibrillar IAPP has been correlated with the pathology of type II diabetes. The mechanism of the conversion that IAPP undergoes from soluble to fibrillar forms has been unclear. By chaperoning IAPP through fusion to maltose binding protein, we find that IAPP can adopt a alpha-helical structure at residues 8-18 and 22-27 and that molecules of IAPP dimerize. Mutational analysis suggests that this dimerization is on the pathway to fibrillation. The structure suggests how IAPP may heterodimerize with insulin, which we confirmed by protein crosslinking. Taken together, these experiments suggest the helical dimerization of IAPP accelerates fibril formation and that insulin impedes fibrillation by blocking the IAPP dimerization interface.
Collapse
Affiliation(s)
| | | | | | - David Eisenberg
- *Correspondence to: David Eisenberg, Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570
| |
Collapse
|
8
|
Soong R, Brender JR, Macdonald PM, Ramamoorthy A. Association of highly compact type II diabetes related islet amyloid polypeptide intermediate species at physiological temperature revealed by diffusion NMR spectroscopy. J Am Chem Soc 2009; 131:7079-85. [PMID: 19405534 DOI: 10.1021/ja900285z] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Self-association of human islet amyloid polypeptide (hIAPP) is correlated with the development of type II diabetes by the disruption of cellular homeostasis in islet cells through the formation of membrane-active oligomers. The toxic species of hIAPP responsible for membrane damage has not been identified. In this study, we show by pulsed field gradient NMR spectroscopy that the monomeric form of the toxic, amyloidogenic human variant of IAPP (hIAPP) adopts a temperature dependent compact folded conformation that is absent in both the nontoxic and nonamyloidogenic rat variant of IAPP and absent in hIAPP at low temperatures, suggesting this compact form of monomeric hIAPP may be linked to its later aggregation and cytotoxicity. In addition to the monomeric form of hIAPP, a large oligomeric species greater than 100 nm in diameter is also present but does not trigger the nucleation-dependent aggregation of IAPP at 4 degrees C, indicating the large oligomeric species may be an off-pathway intermediate that has been predicted by kinetic models of IAPP fiber formation. Furthermore, analysis of the polydispersity of the calculated diffusion values indicates small oligomeric species of hIAPP are absent in agreement with a recent ultracentrifugation study. The absence of small oligomeric species in solution suggests the formation of small, well-defined ion channels by hIAPP may proceed by aggregation of monomeric IAPP on the membrane, rather than by the insertion of preformed structured oligomers from the solution state as has been proposed for other amyloidogenic proteins.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
9
|
Wiltzius JJW, Sievers SA, Sawaya MR, Cascio D, Popov D, Riekel C, Eisenberg D. Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin). Protein Sci 2008; 17:1467-74. [PMID: 18556473 DOI: 10.1110/ps.036509.108] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. Although the cellular toxicity of IAPP has been established, the structure of the fibrillar form found in these deposits is unknown. Here we have crystallized two segments from IAPP, which themselves form amyloid-like fibrils. The atomic structures of these two segments, NNFGAIL and SSTNVG, were determined, and form the basis of a model for the most commonly observed, full-length IAPP polymorph.
Collapse
Affiliation(s)
- Jed J W Wiltzius
- Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095-1570, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Novials A, Rodriguez-Mañas L, Chico A, El Assar M, Casas S, Gomis R. Amylin and hypertension: association of an amylin -G132A gene mutation and hypertension in humans and amylin-induced endothelium dysfunction in rats. J Clin Endocrinol Metab 2007; 92:1446-50. [PMID: 17213278 DOI: 10.1210/jc.2006-1980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Amylin has been linked to the development of hypertension in several pathological states related to hypertension and insulin resistance, although there is scant data regarding its potential mechanisms of action. The -132 G/A mutation located within an activator domain of the amylin gene's promoter was first identified in a small cohort of Spanish patients with type 2 diabetes. OBJECTIVE The objective of the study was to test the interference of amylin peptide with endothelium-dependent responses as an added potential mechanism for amylin-induced hypertension. DESIGN A total of 384 patients with type 2 diabetes and 207 healthy controls were subjected to clinical analysis and genetic screening for the -132 G/A mutation of the amylin gene. The effect of amylin on endothelium-dependent responses was analyzed in aortic rings and mesenteric microvessels from nondiabetic rats. RESULTS The prevalence of the mutation was 10.1 vs. 0.9% in the control population (P<0.001). Hypertension was higher in a diabetic population carrying the mutation than in diabetic noncarriers (74 vs. 57%; P<0.05). Diabetic carriers showed higher fasting amylin levels than diabetic noncarriers (11.4+/-7 vs. 8.2+/-3 pmol/liter; P<0.05). Preincubation with 20 pmol/liter amylin impaired the relaxant responses induced by acetylcholine in rat aorta and mesenteric microvessels. This effect was abolished in both vascular beds in the presence of 100 micromol/liter NG-nitro-L-arginine methyl ester. CONCLUSIONS We propose that amylin levels and hypertension may be linked by a novel mechanism involving the capacity of amylin to induce endothelial dysfunction by interfering with nitric oxide-mediated responses.
Collapse
Affiliation(s)
- Anna Novials
- Institute of Diabetes, Sardà Farriol Foundation, Passeig Bonanova 69, 6th floor, 08017 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|