1
|
Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32:32/167/220206. [PMID: 36813290 PMCID: PMC9949383 DOI: 10.1183/16000617.0206-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023] Open
Abstract
Patients with interstitial lung disease can develop a progressive fibrosing phenotype characterised by an irreversible, progressive decline in lung function despite treatment. Current therapies slow, but do not reverse or stop, disease progression and are associated with side-effects that can cause treatment delay or discontinuation. Most crucially, mortality remains high. There is an unmet need for more efficacious and better-tolerated and -targeted treatments for pulmonary fibrosis. Pan-phosphodiesterase 4 (PDE4) inhibitors have been investigated in respiratory conditions. However, the use of oral inhibitors can be complicated due to class-related systemic adverse events, including diarrhoea and headaches. The PDE4B subtype, which has an important role in inflammation and fibrosis, has been identified in the lungs. Preferentially targeting PDE4B has the potential to drive anti-inflammatory and antifibrotic effects via a subsequent increase in cAMP, but with improved tolerability. Phase I and II trials of a novel PDE4B inhibitor in patients with idiopathic pulmonary fibrosis have shown promising results, stabilising pulmonary function measured by change in forced vital capacity from baseline, while maintaining an acceptable safety profile. Further research into the efficacy and safety of PDE4B inhibitors in larger patient populations and for a longer treatment period is needed.
Collapse
Affiliation(s)
- Martin Kolb
- Department of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France,INSERM, Unité 1152, Université Paris Cité, Paris, France
| | - Toby M. Maher
- Keck Medicine of USC, Los Angeles, CA, USA,National Heart and Lung Institute, Imperial College London, London, UK,Corresponding author: Toby M. Maher ()
| |
Collapse
|
2
|
Ligustrazine Inhibits Lung Phosphodiesterase Activity in a Rat Model of Allergic Asthma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1452116. [PMID: 35047052 PMCID: PMC8763486 DOI: 10.1155/2022/1452116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Objectives This study sought to examine whether ligustrazine was capable of inhibiting phosphodiesterase (PDE) activity and improving lung function in a rat model of asthma. Methods Rats were initially sensitized using ovalbumin (OVA) and then were challenged daily with aerosolized OVA beginning 14 days later (30 min/day) to generate a rat model of asthma. Changes in airway function following methacholine (MCh) injection were evaluated by monitoring lung resistance (RL) and dynamic lung compliance (Cdyn) values using an AniRes2005 analytic system. In addition, serum IgE was measured via ELISA, while PDE expression was evaluated via qPCR and western blotting. Key Findings. Ligustrazine significantly impaired allergen-induced lung hyperresponsivity and inflammation in this asthma model system. Ligustrazine treatment was also associated with reduced expression of PDEs including PDE4 in the lungs of these rats. Conclusions Ligustrazine suppresses airway inflammation and bronchial hyperresponsivity in this rat model system, and these changes are associated with decreased PDE expression at the protein and mRNA levels.
Collapse
|
3
|
Balasubramaniam A, Sheriff S, Friend LA, James JH. Phosphodiesterase 4B knockout prevents skeletal muscle atrophy in rats with burn injury. Am J Physiol Regul Integr Comp Physiol 2018; 315:R429-R433. [PMID: 29693432 DOI: 10.1152/ajpregu.00042.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphodiesterase 4 (PDE4)-cAMP pathway plays a predominant role in mediating skeletal muscle proteolysis in burn injury. The present investigations to determine the PDE4 isoform(s) involved in this action revealed that burn injury increased the expression of rat skeletal muscle PDE4B mRNA by sixfold but had little or no effect on expression of other PDE4 isoforms. These observations led us to study the effects of burn in PDE4B knockout (KO) rats. As reported by us previously, burn injury significantly increased extensor digitorum longus (EDL) muscle total and myofibrillar proteolysis in wild-type (WT) rats, but there were no significant effects on either total or myofibrillar protein breakdown in EDL muscle of PDE4B KO rats with burn injury. Moreover, burn injury increased PDE4 activity in the skeletal muscle of WT rats, but this was reduced by >80% in PDE4B KO rats. Also, burn injury decreased skeletal muscle cAMP concentration in WT rats but had no significant effects in the muscles of PDE4B KO rats. Incubation of the EDL muscle of burn-PDE4B KO rats with an inhibitor of the exchange factor directly activated by cAMP, but not with a protein kinase A inhibitor, eliminated the protective effects of PDE4B KO on EDL muscle proteolysis and increased muscle proteolysis to the same extent as in the EDL of burn-WT rats. These novel findings confirm a major role for PDE4B in skeletal muscle proteolysis in burn injury and suggest that an innovative therapy based on PDE4B-selective inhibitors could be developed to treat skeletal muscle cachexia in burn injury without the fear of causing emesis, which is associated with PDE4D inhibition.
Collapse
Affiliation(s)
- Ambikaipakan Balasubramaniam
- Department of Surgery, University of Cincinnati Medical Center , Cincinnati, Ohio.,Shriner's Hospital for Children , Cincinnati, Ohio
| | - Sulaiman Sheriff
- Department of Surgery, University of Cincinnati Medical Center , Cincinnati, Ohio
| | - Lou Ann Friend
- Department of Surgery, University of Cincinnati Medical Center , Cincinnati, Ohio
| | | |
Collapse
|
4
|
Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model. Sci Rep 2016; 6:37646. [PMID: 27886242 PMCID: PMC5122881 DOI: 10.1038/srep37646] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/28/2016] [Indexed: 12/28/2022] Open
Abstract
Although association studies have unveiled numerous correlations of biochemical markers with age and age-related diseases, we still lack an understanding of their mutual dependencies. To find molecular pathways that underlie age-related diseases as well as their comorbidities, we integrated aging markers from four different high-throughput omics datasets, namely epigenomics, transcriptomics, glycomics and metabolomics, with a comprehensive set of disease phenotypes from 510 participants of the TwinsUK cohort. We used graphical random forests to assess conditional dependencies between omics markers and phenotypes while eliminating mediated associations. Applying this novel approach for multi-omics data integration yields a model consisting of seven modules that represent distinct aspects of aging. These modules are connected by hubs that potentially trigger comorbidities of age-related diseases. As an example, we identified urate as one of these key players mediating the comorbidity of renal disease with body composition and obesity. Body composition variables are in turn associated with inflammatory IgG markers, mediated by the expression of the hormone oxytocin. Thus, oxytocin potentially contributes to the development of chronic low-grade inflammation, which often accompanies obesity. Our multi-omics graphical model demonstrates the interconnectivity of age-related diseases and highlights molecular markers of the aging process that might drive disease comorbidities.
Collapse
|
5
|
McIvor RA. Roflumilast: systemic therapy for chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 2:539-49. [DOI: 10.1586/17476348.2.5.539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Yougbare I, Morin C, Senouvo FY, Sirois C, Albadine R, Lugnier C, Rousseau E. NCS 613, a potent and specific PDE4 inhibitor, displays anti-inflammatory effects on human lung tissues. Am J Physiol Lung Cell Mol Physiol 2011; 301:L441-50. [PMID: 21784969 DOI: 10.1152/ajplung.00407.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation is a hallmark of pulmonary diseases, which leads to lung parenchyma destruction (emphysema) and obstructive bronchiolitis occurring in both chronic obstructive pulmonary disease and asthma. Inflammation is strongly correlated with low intracellular cAMP levels and increase in specific cAMP hydrolyzing activity. The aim of the present study was to investigate the role of the cyclic phosphodiesterase type 4 (PDE4) in human lung and to determine the effects of NCS 613, a new PDE4 inhibitor, on lung inflammation and bronchial hyperresponsiveness. High cAMP-PDE activities were found in the cytosoluble fractions from human lung parenchyma and distal bronchi. PDE4 (rolipram sensitive) represented 40% and 56% of total cAMP-PDE activities in the above-corresponding tissues. Moreover, PDE4A, PDE4B, PDE4C, and PDE4D isoforms were detected in all three subcellular fractions (cytosolic, microsomal, and nuclear) with differential distributions according to specific variants. Pharmacological treatments with NCS 613 significantly decreased PDE4 activity and reduced IκBα degradation in cultured parenchyma, both of which are usually correlated with a lower inflammation status. Moreover, NCS 613 pretreatment potentiated isoproterenol-induced relaxations in human distal bronchi, while reducing TNF-α-induced hyperresponsiveness in cultured bronchi, as assessed in the presence of methacholine, U-46619, or histamine. This reducing effect of NCS 613 on human bronchi hyperresponsiveness triggered by TNF-α was related to a lower expression level of PDE4B and PDE4C, as well as a downregulation of the phosphorylated forms of p38-MAPK, CPI-17, and MYPT-1, which are known to control tone. In conclusion, specific PDE4 inhibitors, such as NCS 613, may represent an alternative and isoform-specific approach toward reducing human lung inflammation and airway overreactivity.
Collapse
Affiliation(s)
- Issaka Yougbare
- Le Bilarium, Department of Physiology and Biophysics, Université de Sherbrooke, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Székely JI, Pataki A. Recent findings on the pathogenesis of bronchial asthma. ACTA ACUST UNITED AC 2010; 96:385-405. [PMID: 19942547 DOI: 10.1556/aphysiol.96.2009.4.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the first part of this series of papers (Székely and Pataki, 102) the pathogenesis of asthma was approached as a pathological antigen-antibody complex induced vago-vagal axon reflex. In the next part (103) the contribution of individual hormonal predisposition, the environmental and the most frequent allergizing factors have been reviewed. In the first section of this last (third) part of the review the genetic factors contributing to the asthma are surveyed. In this field a great progress has been made during the last decade, a lot of genes have been pinpointed which contribute to the heredity of the disease. In the second section of this last paper on the etiology of asthma an attempt is made to summarize the previously reviewed data and some new ones. Actually a new hypothesis is proposed that beyond the multitude of genetic, environmental and hormonal factors the underlying biochemical mechanism is simple: the disequilibrium of two functionally opposing second messenger systems in the airways: the Ca i ++ liberating PLC-PKC cascade and the Ca i ++ level reducing cAMP mediated one with preponderance of the former.
Collapse
Affiliation(s)
- J I Székely
- Human Physiology Department, Medical School, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
8
|
Wang YJ, Jiang YL, Tang HF, Zhao CZ, Chen JQ. Zl-n-91, a selective phosphodiesterase 4 inhibitor, suppresses inflammatory response in a COPD-like rat model. Int Immunopharmacol 2009; 10:252-8. [PMID: 19914404 DOI: 10.1016/j.intimp.2009.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 01/17/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is defined as a disease state characterized by poorly reversible airflow limitation induced by cigarette smoking and/or other noxious particle and gases. Phosphodiesterase (PDE) 4 inhibitors are known to elevated cAMP concentrations in inflammatory cells, leading to inhibition of inflammatory response, relaxation of smooth muscle in the airway, and modulation of sensory nerves in the lung as well. To investigate whether Zl-n-91, a new selective PDE4 inhibitor, could decrease inflammation and improve lung function in a COPD-like rat model, male Sprague-Dawley rats are used to challenge with lipopolysaccharide (LPS) and cigarette smoking (CS) exposure to induce COPD-like animal model. Administration of Zl-n-91 at different dosages results in decreases of inflammatory cell in bronchoalveolar lavage fluid (BALF) as compared with vehicle treatment. Zl-n-91 at 0.03, 0.3 or 3mg/kg not only dose-dependently inhibited PDE4 activity, but also decreased MMP-9 level in lungs and improved dynamic compliance (C(dyn)) as compared with vehicle treatment. Therefore, Zl-n-91 could inhibit inflammatory responses in rats after cigarette smoking exposure and LPS challenge, and it could be of some therapeutic potential as an alternative medicine in treatment of pulmonary diseases such as COPD.
Collapse
Affiliation(s)
- Ya-juan Wang
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
9
|
Press NJ, Banner KH. PDE4 inhibitors - a review of the current field. PROGRESS IN MEDICINAL CHEMISTRY 2009; 47:37-74. [PMID: 19328289 DOI: 10.1016/s0079-6468(08)00202-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neil J Press
- Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, UK
| | | |
Collapse
|
10
|
Guimond A, Viau E, Aubé P, Renzi PM, Paquet L, Ferrari N. Advantageous toxicity profile of inhaled antisense oligonucleotides following chronic dosing in non-human primates. Pulm Pharmacol Ther 2008; 21:845-54. [PMID: 18761414 DOI: 10.1016/j.pupt.2008.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
TPI ASM8 and TPI 1100 are two products containing modified phosphorothioate antisense oligonucleotides (AONs), which are undergoing development for the treatment of asthma and chronic obstructive pulmonary disease (COPD), respectively. TPI ASM8 is comprised of two AONs, one targeting the human chemokine receptor 3 (CCR3) and the other targeting the common beta-chain of the IL-3/IL-5/GM-CSF receptors. TPI 1100 is also a dual-AON compound targeting the phosphodiesterase (PDE) 4 and 7 isotypes. For both products, the AONs are present in a 1:1 ratio by weight. Both products will be administered by inhalation to patients, and TPI ASM8 is currently undergoing Phase 2 clinical trials. As part of the safety assessment of both products, the toxicity and disposition (i.e., pharmacokinetics of the AON components in plasma and tissues) were investigated in 14-day inhalation studies in monkeys at doses ranging from 0.05 to 2.5mg/kg/day. Results indicated that both products were safe and well tolerated at all dose levels. Reversible treatment-related alterations were only observed at the high dose levels tested and were limited to changes in the respiratory tract which were characterized primarily by the presence of alveolar macrophages in the absence of a generalized inflammatory response. Plasma pharmacokinetic profiles showed very low plasma concentrations, and no plasma accumulation was observed after repeated doses. While significant amounts of the AONs of both TPI ASM8 and TPI 1100 were measured in trachea and lung, only limited amounts of the AONs could be measured in kidney and liver, which, in combination with the low plasma level data, is indicative of very low systemic exposure. Taken together, these results demonstrate that these two new AON-based products are safe and that delivery via the inhaled route achieves localized deposition in the pulmonary tract with very limited systemic exposure and reduced toxicity compared to other routes of AON administration.
Collapse
Affiliation(s)
- Alain Guimond
- Topigen Pharmaceuticals Inc., 2901 East Rachel Street, Suite 13, Montreal, Quebec, Canada H1W 4A4
| | | | | | | | | | | |
Collapse
|