1
|
A New Take on Prion Protein Dynamics in Cellular Trafficking. Int J Mol Sci 2020; 21:ijms21207763. [PMID: 33092231 PMCID: PMC7589859 DOI: 10.3390/ijms21207763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The mobility of cellular prion protein (PrPC) in specific cell membrane domains and among distinct cell compartments dictates its molecular interactions and directs its cell function. PrPC works in concert with several partners to organize signaling platforms implicated in various cellular processes. The scaffold property of PrPC is able to gather a molecular repertoire to create heterogeneous membrane domains that favor endocytic events. Dynamic trafficking of PrPC through multiple pathways, in a well-orchestrated mechanism of intra and extracellular vesicular transport, defines its functional plasticity, and also assists the conversion and spreading of its infectious isoform associated with neurodegenerative diseases. In this review, we highlight how PrPC traffics across intra- and extracellular compartments and the consequences of this dynamic transport in governing cell functions and contributing to prion disease pathogenesis.
Collapse
|
2
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
3
|
The 37/67 kDa laminin receptor (LR) inhibitor, NSC47924, affects 37/67 kDa LR cell surface localization and interaction with the cellular prion protein. Sci Rep 2016; 6:24457. [PMID: 27071549 PMCID: PMC4829897 DOI: 10.1038/srep24457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/22/2016] [Indexed: 12/17/2022] Open
Abstract
The 37/67 kDa laminin receptor (LR) is a non-integrin protein, which binds both laminin-1 of the extracellular matrix and prion proteins, that hold a central role in prion diseases. The 37/67 kDa LR has been identified as interactor for the prion protein (PrP(C)) and to be required for pathological PrP (PrP(Sc)) propagation in scrapie-infected neuronal cells, leading to the possibility that 37/67 kDa LR-PrP(C) interaction is related to the pathogenesis of prion diseases. A relationship between 37/67 kDa LR and PrP(C) in the presence of specific LR inhibitor compounds has not been investigated yet. We have characterized the trafficking of 37/67 kDa LR in both neuronal and non-neuronal cells, finding the receptor on the cell surface and nuclei, and identified the 67 kDa LR as the almost exclusive isoform interacting with PrP(C). Here, we show that the treatment with the 37/67 kDa LR inhibitor, NSC47924, affects both the direct 37/67 kDa LR-PrP(C) interaction in vitro and the formation of the immunocomplex in live cells, inducing a progressive internalization of 37/67 kDa LR and stabilization of PrP(C) on the cell surface. These data reveal NSC47924 as a useful tool to regulate PrP(C) and 37/67 kDa LR trafficking and degradation, representing a novel small molecule to be tested against prion diseases.
Collapse
|
4
|
Jovanovic K, Chetty CJ, Khumalo T, Da Costa Dias B, Ferreira E, Malindisa ST, Caveney R, Letsolo BT, Weiss SFT. Novel patented therapeutic approaches targeting the 37/67 kDa laminin receptor for treatment of cancer and Alzheimer's disease. Expert Opin Ther Pat 2015; 25:567-82. [PMID: 25747044 DOI: 10.1517/13543776.2015.1014802] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The 37/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a multi-faceted cellular receptor. It plays a vital role in the malignancy of various cancer types where it is seen to contribute to invasion, adhesion, apoptosis evasion and angiogenesis. Furthermore, it has been found to play an important role in facilitating the processes leading to neurotoxicity in Alzheimer's disease (AD). Various therapeutic options targeting this receptor have been patented with the outlook on application for the treatment/prevention of these diseases. AREAS COVERED The various roles that LRP/LR plays in cancer, AD and infectious diseases caused by viruses and bacteria have been examined in detail and an overview of the current patented therapeutic strategies targeting this receptor is given. EXPERT OPINION Molecular tools directed against LRP/LR, such as antibodies and small interfering RNA, could prove to be effective in the prevention of metastasis and angiogenesis while inducing apoptosis in cancers. Moreover, these strategies could also be applied to AD where LRP/LR is seen to facilitate the production and internalization of the neurotoxic Aβ peptide. This review provides a comprehensive overview of the mechanisms by which LRP/LR is involved in eliciting pathogenic events, while showing how the use of patented approaches targeting this receptor could be used to treat them.
Collapse
Affiliation(s)
- Katarina Jovanovic
- University of the Witwatersrand, School of Molecular and Cell Biology , Private Bag 3, Wits 2050, Johannesburg , Republic of South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
High resolution imaging study of interactions between the 37 kDa/67 kDa laminin receptor and APP, beta-secretase and gamma-secretase in Alzheimer's disease. PLoS One 2014; 9:e100373. [PMID: 24972054 PMCID: PMC4074076 DOI: 10.1371/journal.pone.0100373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 05/27/2014] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia affecting the elderly. Neurodegeneration is caused by the amyloid beta (Aβ) peptide which is generated from the sequential proteolytic cleavage of the Amyloid Precursor Protein (APP) by the β– and γ- secretases. Previous reports revealed that the 37 kDa/67 kDa laminin receptor (LRP/LR) is involved in APP processing, however, the exact mechanism by which this occurs remains largely unclear. This study sought to assess whether LRP/LR interacted with APP, β- or γ-secretase. Detailed confocal microscopy revealed that LRP/LR showed a strong co-localisation with APP, β- and γ-secretase, respectively, at various sub-cellular locations. Superresolution Structured Illumination Microscopy (SR-SIM) showed that interactions were unlikely between LRP/LR and APP and β-secretase, respectively, while there was strong co-localisation between LRP/LR and γ-secretase at this 80 nm resolution. FRET was further employed to assess the possibility of protein-protein interactions and only an interaction between LRP/LR and γ-secretase was found. FLAG co-immunoprecipitation confirmed these findings as LRP/LR co-immunoprecipitated with γ-secretase, but failed to do so with APP. These findings indicate that LRP/LR exerts its influence on Aβ shedding via a direct interaction with the γ-secretase and possibly an indirect interaction with the β-secretase.
Collapse
|
6
|
Anti-LRP/LR specific antibodies and shRNAs impede amyloid beta shedding in Alzheimer's disease. Sci Rep 2014; 3:2699. [PMID: 24048412 PMCID: PMC3776966 DOI: 10.1038/srep02699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/02/2013] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. The amyloid beta (Aβ) peptide is the predominant candidate aetiological agent and is generated through the sequential proteolytic cleavage of the Amyloid Precursor Protein (APP) by beta (β) and gamma (γ) secretases. Since the cellular prion protein (PrPc) has been shown to regulate Aβ shedding, we investigated whether the cellular receptor for PrPc, namely the 37 kDa/67 kDa Laminin Receptor (LRP/LR) played a role in Aβ shedding. Here we show that LRP/LR co-localises with the AD relevant proteins APP, β- and γ-secretase, respectively. Antibody blockage and shRNA knock-down of LRP/LR reduces Aβ shedding, due to impediment of β-secretase activity, rather than alteration of APP, β- and γ-secretase levels. These findings indicate that LRP/LR contributes to Aβ shedding and recommend anti-LRP/LR specific antibodies and shRNAs as novel therapeutic tools for AD treatment.
Collapse
|
7
|
Adhesion and Invasion of Breast and Oesophageal Cancer Cells Are Impeded by Anti-LRP/LR-Specific Antibody IgG1-iS18. PLoS One 2013; 8:e66297. [PMID: 23823499 PMCID: PMC3688881 DOI: 10.1371/journal.pone.0066297] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022] Open
Abstract
Adhesion and invasion have been identified as the two key components of metastasis. The 37 kDa/67 kDa laminin receptor (LRP/LR) is thought to enhance these two processes thus endorsing the progression of cancer. Here we report on LRP/LR and the metastatic potential of MDA-MB 231 breast and WHCO1 oesophageal cancer cells. Western blot analysis revealed a significant increase in total laminin receptor precursor (LRP) levels of breast and oesophageal cancer cells in comparison to non-invasive MCF-7 breast cancer cells, whereas LRP/LR cell surface levels in both cell lines were not significantly different to those of MCF-7 cells as analysed by flow cytometry. Incubation of breast and oesophageal cancer cells with the anti-LRP/LR specific antibody, IgG1-iS18, resulted in significant reduction in the adhesive potential of WHCO1 and MDA-MB 231 cells by 92% and 16%, respectively. Moreover, invasion was significantly impeded by 98% and 25% for WHCO1 and MDA-MB 231 cells, respectively. Pearson's correlation coefficients proved a positive correlation between total LRP/LR levels and invasive potential as well as between the adhesive and invasive potential of breast and oesophageal cancer cells. Our findings suggest that through interference of the LRP/LR-laminin-1 interaction, anti-LRP/LR specific antibody IgG1-iS18 may act as a possible alternative therapeutic tool for metastatic breast and oesophageal cancer treatment.
Collapse
|
8
|
Moodley K, Weiss SFT. Downregulation of the non-integrin laminin receptor reduces cellular viability by inducing apoptosis in lung and cervical cancer cells. PLoS One 2013; 8:e57409. [PMID: 23472084 PMCID: PMC3589420 DOI: 10.1371/journal.pone.0057409] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/21/2013] [Indexed: 12/31/2022] Open
Abstract
The non-integrin laminin receptor, here designated the 37-kDa/67-kDa laminin receptor (LRP/LR), is involved in many physiologically relevant processes, as well as numerous pathological conditions. The overexpression of LRP/LR on various cancerous cell lines plays critical roles in tumour metastasis and angiogenesis. This study investigated whether LRP/LR is implicated in the maintenance of cellular viability in lung and cervical cancer cell lines. Here we show a significant reduction in cellular viability in the aforementioned cell lines as a result of the siRNA-mediated downregulation of LRP. This reduction in cellular viability is due to increased apoptotic processes, reflected by the loss of nuclear integrity and the significant increase in the activity of caspase-3. These results indicate that LRP/LR is involved in the maintenance of cellular viability in tumorigenic lung and cervix uteri cells through the blockage of apoptosis. Knockdown of LRP/LR by siRNA might represent an alternative therapeutic strategy for the treatment of lung and cervical cancer.
Collapse
Affiliation(s)
- Kiashanee Moodley
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, The Republic of South Africa
| | - Stefan F. T. Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, The Republic of South Africa
| |
Collapse
|
9
|
Kim DG, Choi JW, Lee JY, Kim H, Oh YS, Lee JW, Tak YK, Song JM, Razin E, Yun S, Kim S. Interaction of two translational components, lysyl‐tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin‐dependent cell migration. FASEB J 2012; 26:4142-59. [DOI: 10.1096/fj.12-207639] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Dae Gyu Kim
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- College of PharmacySeoul National UniversitySeoulKorea
| | - Jin Woo Choi
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jin Young Lee
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- College of PharmacySeoul National UniversitySeoulKorea
| | - Hyerim Kim
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
| | - Young Sun Oh
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
| | - Jung Weon Lee
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- College of PharmacySeoul National UniversitySeoulKorea
- World Class UniversityDepartment of Molecular Medicine and Biopharmaceutical SciencesSeoul National UniversitySeoulKorea
| | - Yu Kyung Tak
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- World Class UniversityDepartment of Molecular Medicine and Biopharmaceutical SciencesSeoul National UniversitySeoulKorea
| | - Joon Myong Song
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- World Class UniversityDepartment of Molecular Medicine and Biopharmaceutical SciencesSeoul National UniversitySeoulKorea
| | - Ehud Razin
- Department of Biochemistry and Molecular BiologyThe Hebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Seok‐Hyun Yun
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Sunghoon Kim
- Medicinal Bioconvergence Research CenterSeoul National UniversitySeoulKorea
- College of PharmacySeoul National UniversitySeoulKorea
- World Class UniversityDepartment of Molecular Medicine and Biopharmaceutical SciencesSeoul National UniversitySeoulKorea
| |
Collapse
|
10
|
Zhou R, Li X, Zheng H, Li L, Quan W, Shen Z, Tong J, Yang Q, Fu Q. Molecular characterization of the full-length coding sequence of the caprine laminin receptor gene (RPSA). Biochem Genet 2010; 48:962-9. [PMID: 20839046 DOI: 10.1007/s10528-010-9378-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 07/07/2010] [Indexed: 01/30/2023]
Abstract
Scrapie is a prion disease in sheep and goats. Ribosomal protein SA (RPSA), also called 37 kDa laminin receptor precursor/67 kDa laminin receptor has been demonstrated to be a putative cell surface receptor for prion. To investigate the caprine RPSA, we cloned the full-length coding sequence of the gene of goat and submitted it to GenBank. The length of the open reading frame is 888 bp, encoding 295 amino acids. The putative amino acid sequence is highly similar to that of other mammals. The caprine amino acid sequence of RPSA is shown to be identical to the sequence of species susceptible to scrapie at positions 241, 272, and 291. The phylogenetic tree analysis revealed that the genetic distance between sheep and goat is the smallest. Moreover, RT-PCR results of 11 tissues indicated that RPSA mRNA is expressed in all selected caprine tissues.
Collapse
Affiliation(s)
- Rongyan Zhou
- Agricultural University of Hebei, Baoding, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dorban G, Defaweux V, Heinen E, Antoine N. Spreading of prions from the immune to the peripheral nervous system: a potential implication of dendritic cells. Histochem Cell Biol 2010; 133:493-504. [PMID: 20238136 DOI: 10.1007/s00418-010-0687-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2010] [Indexed: 12/20/2022]
Abstract
The implication of dendritic cells (DCs) in the peripheral spreading of prions has increased in the last few years. It has been recently described that DCs can transmit prions to primary neurons from the central nervous system. In order to improve the understanding of the earliest steps of prion peripheral neuroinvasion, we studied, using an in vitro model, the effect of exposing primary peripheral neurons to scrapie-infected lymphoid cells. Thanks to this system, there is evidence that bone marrow dendritic cells (BMDCs) are in connection with neurites of peripheral neurons via cytoplasmic extensions. BMDCs are competent to internalize prions independently from the expression of cellular prion protein (PrP(C)) and have the capacity to transmit detergent-insoluble, relatively proteinase K-resistant prion protein (PrP(Sc)) to peripheral neurons after 96 h of coculture. Furthermore, we confirmed the special status of the peripheral nervous system in front of prion diseases. Contrary to central neurons, PrP(Sc) infection does not disturb survival and neurite outgrowth. Our model demonstrates that PrP(Sc)-loaded dendritic cells and peripheral nerve fibers that are included in neuroimmune interfaces can initiate and spread prion neuroinvasion.
Collapse
Affiliation(s)
- Gauthier Dorban
- Human Histology, Immunology Center, Faculty of Medicine, University of Liège, C.H.U., Avenue de l'hôpital, Tour de pharmacie +4, 4000, Liège, Belgium.
| | | | | | | |
Collapse
|
12
|
Jodoin J, Misiewicz M, Makhijani P, Giannopoulos PN, Hammond J, Goodyer CG, LeBlanc AC. Loss of anti-Bax function in Gerstmann-Sträussler-Scheinker syndrome-associated prion protein mutants. PLoS One 2009; 4:e6647. [PMID: 19680558 PMCID: PMC2722024 DOI: 10.1371/journal.pone.0006647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 07/15/2009] [Indexed: 11/18/2022] Open
Abstract
Previously, we have shown the loss of anti-Bax function in Creutzfeldt Jakob disease (CJD)-associated prion protein (PrP) mutants that are unable to generate cytosolic PrP (CyPrP). To determine if the anti-Bax function of PrP modulates the manifestation of prion diseases, we further investigated the anti-Bax function of eight familial Gerstmann-Sträussler-Scheinker Syndrome (GSS)-associated PrP mutants. These PrP mutants contained their respective methionine (M) or valine (V) at codon 129. All of the mutants lost their ability to prevent Bax-mediated chromatin condensation or DNA fragmentation in primary human neurons. In the breast carcinoma MCF-7 cells, the F198SV, D202NV, P102LV and Q217RV retained, whereas the P102LM, P105LV, Y145stopM and Q212PM PrP mutants lost their ability to inhibit Bax-mediated condensed chromatin. The inhibition of Bax-mediated condensed chromatin depended on the ability of the mutants to generate cytosolic PrP. However, except for the P102LV, none of the mutants significantly inhibited Bax-mediated caspase activation. These results show that the cytosolic PrP generated from the GSS mutants is not as efficient as wild type PrP in inhibiting Bax-mediated cell death. Furthermore, these results indicate that the anti-Bax function is also disrupted in GSS-associated PrP mutants and is not associated with the difference between CJD and GSS.
Collapse
Affiliation(s)
- Julie Jodoin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Micheal Misiewicz
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Priya Makhijani
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Paresa N. Giannopoulos
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | - Jennifer Hammond
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
| | | | - Andréa C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- * E-mail: .
| |
Collapse
|
13
|
Lechauve C, Rezaei H, Celier C, Kiger L, Corral-Debrinski M, Noinville S, Chauvierre C, Hamdane D, Pato C, Marden MC. Neuroglobin and prion cellular localization: investigation of a potential interaction. J Mol Biol 2009; 388:968-77. [PMID: 19327369 DOI: 10.1016/j.jmb.2009.03.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 02/18/2009] [Accepted: 03/18/2009] [Indexed: 11/25/2022]
Abstract
Neuroglobin (Ngb) and the cellular prion protein (PrP(c)), proteins of unknown function in the nervous system, are known to be expressed in the retina and have been observed in different rat retinal cells. The retina is the site of the highest concentration for Ngb, a heme protein of similar size and conformation to myoglobin. In this study, we demonstrated by immunohistochemical analysis of retinal colocalization of Ngb and PrP(c) in the ganglion cell layer. Considering for these two a common protective role in relation to oxidative stress and a possible transient contact during migration of PrP(c) through the eye or upon neuronal degradation, we undertook in vitro studies of the interaction of the purified proteins. Mixing these two proteins leads to rapid aggregation, even at submicromolar concentrations. As observed with the use of dynamic light scattering, particles comprising both proteins evolve to hundreds of nanometers within several seconds, a first report showing that PrP(c) is able to form aggregates without major structural changes. The main effect would then appear to be a protein-protein interaction specific to the surface charge of the Ngb protein with PrP(c) N-terminal sequence. A dominant parameter is the solvent ionic force, which can significantly modify the final state of aggregation. PrP(c), normally anchored to the cell membrane, is toxic in the cytoplasm, where Ngb is present; this could suggest an Ngb function of scavenging proteins capable of forming deleterious aggregates considering a charge complementarity in the complex.
Collapse
Affiliation(s)
- Christophe Lechauve
- INSERM U779, Universités Paris VI et XI, Hopital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pflanz H, Vana K, Mitteregger G, Pace C, Messow D, Sedlaczek C, Nikles D, Kretzschmar HA, Weiss SFT. Microinjection of lentiviral vectors expressing small interfering RNAs directed against laminin receptor precursor mRNA prolongs the pre-clinical phase in scrapie-infected mice. J Gen Virol 2009; 90:269-74. [PMID: 19088298 DOI: 10.1099/vir.0.004168-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We examined therapeutic in vitro and in vivo approaches using lentivirus-based packaging of small interfering RNAs (siRNAs) targeting the non-integrin laminin receptor mRNA for treatment and prevention of prion disorders. Transfection of N2aSc(+) cells with recombinant plasmids expressing three different siRNAs, significantly reduced both the LRP (laminin receptor precursor) and PrP(Sc) levels by approximately 40-60 %. Stereotactic intracerebral microinjection of recombinant lentiviral vectors LVsiRNA-LRP 7 and 9 into the cortex of C57BL/6 wild-type mice resulted in a significant reduction of the LR levels in the cortex 15 days post-injection by 62 and 82 %, respectively. Intracerebral RML inoculation of C57BL/6 mice after microinjection with recombinant lentiviral vector LVsiRNA-LRP 7 into the hippocampus resulted in a significant reduction of both LRP and PrP(Sc) levels by 36 and 41 %, respectively, concomitant with a significant prolongation of the pre-clinical phase. Lentiviral vectors expressing siRNAs targeting LRP mRNA represent a novel delivery system for the treatment of transmissible spongiform encephalopathies.
Collapse
Affiliation(s)
- Heike Pflanz
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen Str. 25, D-81377 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zuber C, Mitteregger G, Schuhmann N, Rey C, Knackmuss S, Rupprecht W, Reusch U, Pace C, Little M, Kretzschmar HA, Hallek M, Büning H, Weiss S. Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J Gen Virol 2008; 89:2055-2061. [PMID: 18632978 DOI: 10.1099/vir.0.83670-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 37/67 kDa laminin receptor (LRP/LR) acts as a receptor for prions providing a promising target for the treatment of prion diseases. Recently, we selected anti-LRP/LR single-chain antibodies (scFvs) and proved a reduction of the peripheral PrP(Sc) propagation by passive immunotransfer into scrapie-infected mice. Here, we report the development of an in vivo gene delivery system based on adeno-associated virus (AAV) vectors expressing scFvs-S18 and -N3 directed against LRP/LR. Transduction of neuronal and non-neuronal cells with recombinant (r)AAV serotype 2 vectors encoding scFv-S18, -N3 and -C9 verified the efficient secretion of the antibodies. These vectors were administered via stereotactic intracerebral microinjection into the hippocampus of C57BL/6 mice, followed by intracerebral inoculation with 10 % RML at the same site 2 weeks post-injection of rAAV. After 90 days post-infection, scFv-S18 and -N3 expression resulted in the reduction of peripheral PrP(Sc) propagation by approximately 60 and 32 %, respectively, without a significant prolongation of incubation times and survival. Proof of rAAV vector DNA in spleen samples by real-time PCR strongly suggests a transport or trafficking of rAAV from the brain to the spleen, resulting in rAAV-mediated expression of scFv followed by reduced PrP(Sc) levels in the spleen most likely due to the blockage of the prion receptor LRP/LR by scFv.
Collapse
Affiliation(s)
- Chantal Zuber
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Gerda Mitteregger
- Zentrum für Neuropathologie und Prionforschung der LMU München, Feodor-Lynen-Str. 23, 81377 München, Germany
| | - Natascha Schuhmann
- Universität zu Köln, Klinik I für Innere Medizin, Kerpener Str. 62, 50937 Köln, Germany
| | - Clémence Rey
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Stefan Knackmuss
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Wolfgang Rupprecht
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Uwe Reusch
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Claudia Pace
- Zentrum für Neuropathologie und Prionforschung der LMU München, Feodor-Lynen-Str. 23, 81377 München, Germany
| | - Melvyn Little
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Hans A Kretzschmar
- Zentrum für Neuropathologie und Prionforschung der LMU München, Feodor-Lynen-Str. 23, 81377 München, Germany
| | - Michael Hallek
- Zentrum für Molekulare Medizin Köln, Universität zu Köln, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany.,Universität zu Köln, Klinik I für Innere Medizin, Kerpener Str. 62, 50937 Köln, Germany
| | - Hildegard Büning
- Zentrum für Molekulare Medizin Köln, Universität zu Köln, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany.,Universität zu Köln, Klinik I für Innere Medizin, Kerpener Str. 62, 50937 Köln, Germany
| | - Stefan Weiss
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| |
Collapse
|