1
|
Chen X, Jiang L, Zhou Z, Yang B, He Q, Zhu C, Cao J. The Role of Membrane-Associated E3 Ubiquitin Ligases in Cancer. Front Pharmacol 2022; 13:928794. [PMID: 35847032 PMCID: PMC9285105 DOI: 10.3389/fphar.2022.928794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
The cell membrane system comprises the plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosome, mitochondria, and nuclear membrane, which are essential for maintaining normal physiological functions of cells. The proteins associated with these membrane-organelles are frequently modified to regulate their functions, the most common of which is ubiquitin modification. So far, many ubiquitin E3 ligases anchored in the membrane system have been identified as critical players facilitating intracellular biofunctions whose dysfunction is highly related to cancer. In this review, we summarized membrane-associated E3 ligases and revealed their relationship with cancer, which is of great significance for discovering novel drug targets of cancer and may open up new avenues for inducing ubiquitination-mediated degradation of cancer-associated membrane proteins via small chemicals such as PROTAC and molecular glue.
Collapse
Affiliation(s)
- Xuankun Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Zhesheng Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Chengliang Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, China
- *Correspondence: Chengliang Zhu, ; Ji Cao,
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
- *Correspondence: Chengliang Zhu, ; Ji Cao,
| |
Collapse
|
2
|
Pangou E, Sumara I. The Multifaceted Regulation of Mitochondrial Dynamics During Mitosis. Front Cell Dev Biol 2021; 9:767221. [PMID: 34805174 PMCID: PMC8595210 DOI: 10.3389/fcell.2021.767221] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 12/01/2022] Open
Abstract
Mitosis ensures genome integrity by mediating precise segregation of the duplicated genetic material. Segregation of subcellular organelles during mitosis also needs to be tightly coordinated in order to warrant their proper inheritance and cellular homeostasis. The inheritance of mitochondria, a powerhouse of the cell, is tightly regulated in order to meet the high energy demand to fuel the mitotic machinery. Mitochondria are highly dynamic organelles, which undergo events of fission, fusion and transport during different cell cycle stages. Importantly, during mitosis several kinases phosphorylate the key mitochondrial factors and drive fragmentation of mitochondria to allow for their efficient distribution and inheritance to two daughter cells. Recent evidence suggests that mitochondrial fission can also actively contribute to the regulation of mitotic progression. This review aims at summarizing established and emerging concepts about the complex regulatory networks which couple crucial mitotic factors and events to mitochondrial dynamics and which could be implicated in human disease.
Collapse
Affiliation(s)
- Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.,Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, Lv B, Gao C, Yan Z, Pang D, Lu K, Ahmad NH, Wang L, Zhu J, Zhang L, Zhuang T, Li X. Regulation of Hippo/YAP signaling and Esophageal Squamous Carcinoma progression by an E3 ubiquitin ligase PARK2. Am J Cancer Res 2020; 10:9443-9457. [PMID: 32863938 PMCID: PMC7449928 DOI: 10.7150/thno.46078] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed cancer types in China. Recent genomic sequencing analysis indicated the over-activation of Hippo/YAP signaling might play important roles for the carcinogenic process and progression for ESCC patients. However, little is known about the molecular mechanisms that controls Hippo signaling activity in ESCC. Our previous studies indicated that PLCE1-an important risk factor for ESCC-linked to ESCC progression through snail signaling, during this period, we found PARK2 was an important downstream target of PLCE1-snail axis. PARK2 was decreased in ESCC human samples, and correlated with good prognosis in ESCC patients. Further research showed that PARK2 could inhibit YAP, which functions as key downstream effectors of the Hippo pathway. Here, we aim to reveal the molecular mechanisms of PARK2 modulated Hippo pathway in ESCC. Methods: To evaluate the function of PARK2 in ESCC, we used a tissue microarray (TMA) of 223 human ESCC patients and immunohistochemistry to analyze the correlation between PARK2 expression and clinicopathologic variables. Depletion of endogenous PARK2 and YAP from ESCC cells using CRISPR/Cas9 technologies. Flow cytometry and EdU cell proliferation assay were used to detect proliferation of ESCC cells. Nude mice subcutaneous injection and Ki-67 staining were used to evaluate tumor growth in vivo. Migration and invasion assays were performed. In addition, lung metastasis models in mice were used to validate the function of PARK2 in vivo. Identification of PARK2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. The RNA-seq analysis results were validated through quantitative real-time PCR (qRT-PCR) analysis. The protein half-life of YAP was analyzed by Cycloheximide assay, and the TEAD activity was detected by Luciferase reporter assays. Results: Clinical sample of ESCC revealed that low PARK2 expression correlated with late tumor stage (P < 0.001), poor differentiation (P < 0.04), lymph node (P < 0.001) and distant metastasis (P = 0.0087). Multivariate Cox proportional regression analysis further revealed that PARK2 expression (P = 0.032) is an independent prognostic factor for the overall survival of ESCC patients. Besides, the immunohistochemistry results showed that PARK2 negatively correlated with YAP protein level (P < 0.001). PARK2 depletion promotes ESCC progression both through Hippo/YAP axis, while PARK2 overexpression suppresses ESCC tumor progression by Hippo signaling. Co-IP and ubiquitination assays revealed that PARK2 could interact with YAP in the cytosol and promotes YAP K48-linked ubiquitination at K90 sites. Conclusion: Clinical sample analysis and mechanistic study have validated PARK2 as a tumor suppressor for ESCC. Multivariate Cox proportional regression analysis further revealed that PARK2 is an independent prognostic factor for the overall survival of ESCC patients. Cellular and molecular mechanisms in this study showed that PARK2 associated with YAP protein in the cytosol, promoted YAP ubiquitination and proteasome-dependent degradation in ESCC cells. Therefore, as a novel modulator for Hippo signaling, modulation of PARK2 activity or gene expression level could be an appealing strategy to treat esophageal.
Collapse
|
4
|
Do YJ, Yun SY, Park MY, Kim E. The M458L missense mutation disrupts the catalytic properties of Parkin. FEBS Lett 2017; 592:78-88. [PMID: 29223129 DOI: 10.1002/1873-3468.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/09/2022]
Abstract
Parkin encodes an E3 ubiquitin ligase, and mutations affecting its catalytic potential are implicated in autosomal recessive Parkinson's disease (PD). The M458L mutation of parkin and its enzymatic effects require characterization. Therefore, we examined the enzymatic activity of Parkin with M458L mutation. We show that the M458L mutant retains its autoubiquitination potential in vitro but not in cells. Fas-associated factor 1 and p38 (substrates of Parkin) are able to bind to the M458L mutant in cells; however, these Parkin substrates are not ubiquitinated and degraded in M458L mutant-transfected cells. Moreover, M458L mutant fails to protect the mitochondria against hydrogen peroxide, leading to cell death. Considering the role of mitochondrial dysfunction in PD pathogenesis, our results imply a causative role for the M458L mutation in neurodegeneration.
Collapse
Affiliation(s)
- Yun-Ju Do
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Seo Young Yun
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Min-Young Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| |
Collapse
|
5
|
Tzeng YW, Li DY, Chen Y, Yang CH, Chang CY, Juang YL. LMO7 exerts an effect on mitosis progression and the spindle assembly checkpoint. Int J Biochem Cell Biol 2017; 94:22-30. [PMID: 29158164 DOI: 10.1016/j.biocel.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022]
Abstract
LMO7 (LIM domain only 7) is a transcription regulator for expression of many Emery-Dreifuss muscular dystrophy-relevant genes, and binds to α-actinin and AF6/afadin at adherens junctions for epithelial cell-cell adhesion. In this study, we found that human LMO7 interacted with the spindle assembly checkpoint (SAC) protein MAD1. LMO7 colocalized with actin filaments at the cell membrane but did not colocalize with MAD1 at kinetochores in prometaphase. Our observations reveal that overexpression but not depletion of LMO7 caused a SAC defect, and that the LIM domain of LMO7 was a determinant of its ability to interfere with kinetochore localization of the SAC proteins MAD2 and BUBR1 and cause a SAC defect though the LIM peptide itself did neither bind to MAD1, MAD2 and BUBR1 nor localize to the actin filaments. However, overexpression of LMO7 or the LIM peptide did not interfere with kinetochore localization of MAD1. Additionally, overexpression of the LIM peptide prolonged mitotic timing and interfered with chromosome congression whereas that of LMO7b did not. Taken together, we conclude that LMO7 via its LIM domain acts to control mitosis progression and exerts an effect on the SAC.
Collapse
Affiliation(s)
- Yao-Wei Tzeng
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| | - Dai-Yu Li
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Yvan Chen
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Cheng-Hsiu Yang
- Institute of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Chih-Yun Chang
- Institute of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Yue-Li Juang
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan.
| |
Collapse
|
6
|
Ni H, Zhou Z, Jiang B, Yuan X, Cao X, Huang G, Li Y. Inactivation of parkin by promoter methylation correlated with lymph node metastasis and genomic instability in nasopharyngeal carcinoma. Tumour Biol 2017; 39:1010428317695025. [PMID: 28351314 DOI: 10.1177/1010428317695025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the inactivation of the parkin gene by promoter methylation and its relationship with genome instability in nasopharyngeal carcinoma. Parkin was considered as a tumor suppressor gene in various types of cancers. However, its role in nasopharyngeal carcinoma is unexplored. Genomic instabilities were detected in nasopharyngeal carcinoma tissues by the random amplified polymorphic DNA. The methylation-specific polymerase chain reaction, semi-quantitative reverse transcription polymerase chain reaction, and immunohistochemical analysis were used to detect methylation and mRNA and protein expression of parkin in 54 cases of nasopharyngeal carcinoma tissues and 16 cases of normal nasopharyngeal epithelia tissues, and in 5 nasopharyngeal carcinoma cell lines (CNE1, CNE2, TWO3, C666, and HONE1) and 1 normal nasopharyngeal epithelia cell line (NP69). mRNA expression of parkin in CNE1 and CNE2 was analyzed before and after methyltransferase inhibitor 5-aza-2-deoxycytidine treatment. The relationship between promoter methylation and mRNA expression, demethylation and mRNA expression, and mRNA and protein expression of the gene and clinical factors and genomic instabilities were analyzed. The mRNA and protein expression levels were significantly reduced in 54 cases of human nasopharyngeal carcinoma compared with 16 cases of normal nasopharyngeal epithelia. Parkin-methylated cases showed significantly lower mRNA and protein expression levels compared with unmethylated cases. After 5-aza-2-deoxycytidine treatment, parkin mRNA expression was restored in CNE1 and CNE2; 92.59% (50/54) of nasopharyngeal carcinoma demonstrated genomic instability. Parkin is frequently inactivated by promoter methylation, and its mRNA and protein expression correlate with lymph node metastasis and genomic instability. Parkin deficiency probably promotes tumorigenesis in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Haifeng Ni
- Department of Otolaryngology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou, China
| | - Zhen Zhou
- Department of Otolaryngology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou, China
| | - Bo Jiang
- Department of Otolaryngology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou, China
| | - Xiaoyang Yuan
- Department of Otolaryngology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou, China
| | - Xiaolin Cao
- Department of Otolaryngology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou, China
| | - Guangwu Huang
- Department of Otolaryngology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yong Li
- Department of Otolaryngology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
7
|
Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N. Quercetin Glycosides Induced Neuroprotection by Changes in the Gene Expression in a Cellular Model of Parkinson’s Disease. J Mol Neurosci 2014; 55:609-17. [DOI: 10.1007/s12031-014-0400-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|
8
|
Gerola S, Nittka S, Kähler G, Tao S, Brenner H, Binelli G, Eils R, Brors B, Neumaier M. Genetic variants in apoptosis-related genes associated with colorectal hyperplasia. Genes Chromosomes Cancer 2014; 53:769-78. [DOI: 10.1002/gcc.22185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 04/21/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
- Stefano Gerola
- Institute for Clinical Chemistry; Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg; Mannheim 68167 Germany
| | - Stefanie Nittka
- Institute for Clinical Chemistry; Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg; Mannheim 68167 Germany
| | - Georg Kähler
- Department of Medical; Medical Center Mannheim, Universitätsmedizin Mannheim, University of Heidelberg; Mannheim Germany
| | - Sha Tao
- Division of Clinical Epidemiology and Aging Research; German Cancer Research Center (DKFZ); Heidelberg 69120 Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research; German Cancer Research Center (DKFZ); Heidelberg 69120 Germany
| | - Giorgio Binelli
- Department of Theoretical and Applied Sciences; Insubria University; Varese Italy
| | - Roland Eils
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 224; Heidelberg Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 224; Heidelberg Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry; Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg; Mannheim 68167 Germany
| |
Collapse
|
9
|
Abstract
PARK2 (PARKIN) is an E3 ubiquitin ligase involved in multiple signaling pathways and cellular processes. Activity of PARK2 is tightly regulated through inter- and intra-molecular interactions. Dysfunction of PARK2 is associated with the progression of parkinsonism. Notably, frequent PARK2 inactivation has been identified in various human cancers. Park2-deficient mice are more susceptible to tumorigenesis, indicating its crucial role as a tumor suppressor. However, biological studies also show that PARK2 possesses both pro-survival and growth suppressive functions. Here, we summarize the genetic lesions of PARK2 in human cancers and discuss the current knowledge of PARK2 in cancer progression. We further highlight future efforts for the study of PARK2 in cancer.
Collapse
|
10
|
Sun X, Liu M, Hao J, Li D, Luo Y, Wang X, Yang Y, Li F, Shui W, Chen Q, Zhou J. Parkin deficiency contributes to pancreatic tumorigenesis by inducing spindle multipolarity and misorientation. Cell Cycle 2013; 12:1133-41. [PMID: 23470638 DOI: 10.4161/cc.24215] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Parkin, an E3 ubiquitin ligase well known for its role in the pathogenesis of juvenile Parkinson disease, has been considered as a candidate tumor suppressor in certain types of cancer. It remains unknown whether parkin is involved in the development of pancreatic cancer, the fourth leading cause of cancer-related deaths worldwide. Herein, we demonstrate the downregulation and copy number loss of the parkin gene in human pancreatic cancer specimens. The expression of parkin negatively correlates with clinicopathological parameters indicating the malignancy of pancreatic cancer. In addition, knockdown of parkin expression promotes the proliferation and tumorigenic properties of pancreatic cancer cells both in vitro and in mice. We further find that parkin deficiency increases the proportion of cells with spindle multipolarity and multinucleation. Parkin-depleted cells also show a significant increase in spindle misorientation. These findings indicate crucial involvement of parkin deficiency in the pathogenesis of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaodong Sun
- Key Laboratory of Protein Science and Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|