1
|
Ali A, Almesmari FSA, Dhahouri NA, Saleh Ali AM, Aldhanhani MAAMA, Vijayan R, Al Tenaiji A, Al Shamsi A, Hertecant J, Al Jasmi F. Clinical, Biochemical, and Genetic Heterogeneity in Glutaric Aciduria Type II Patients. Genes (Basel) 2021; 12:1334. [PMID: 34573316 PMCID: PMC8466204 DOI: 10.3390/genes12091334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
The variants of electron transfer flavoprotein (ETFA, ETFB) and ETF dehydrogenase (ETFDH) are the leading cause of glutaric aciduria type II (GA-II). In this study, we identified 13 patients harboring six variants of two genes associated with GA-II. Out of the six variants, four were missense, and two were frameshift mutations. A missense variant (ETFDH:p.Gln269His) was observed in a homozygous state in nine patients. Among nine patients, three had experienced metabolic crises with recurrent vomiting, abdominal pain, and nausea. In one patient with persistent metabolic acidosis, hypoglycemia, and a high anion gap, the ETFDH:p.Gly472Arg, and ETFB:p.Pro94Thrfs*8 variants were identified in a homozygous, and heterozygous state, respectively. A missense variant ETFDH:p.Ser442Leu was detected in a homozygous state in one patient with metabolic acidosis, hypoglycemia, hyperammonemia and liver dysfunction. The ETFDH:p.Arg41Leu, and ETFB:p.Ile346Phefs*19 variants were observed in a homozygous state in one patient each. Both these variants have not been reported so far. In silico approaches were used to evaluate the pathogenicity and structural changes linked with these six variants. Overall, the results indicate the importance of a newborn screening program and genetic investigations for patients with GA-II. Moreover, careful interpretation and correlation of variants of uncertain significance with clinical and biochemical findings are needed to confirm the pathogenicity of such variants.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Fatmah Saeed Ali Almesmari
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Nahid Al Dhahouri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Arwa Mohammad Saleh Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Mohammed Ahmed Ali Mohamed Ahmed Aldhanhani
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amal Al Tenaiji
- Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi P.O. Box 51900, United Arab Emirates;
| | - Aisha Al Shamsi
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.S.); (J.H.)
| | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.S.); (J.H.)
| | - Fatma Al Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.S.); (J.H.)
| |
Collapse
|
2
|
Cuesta-Astroz Y, Gischkow Rucatti G, Murgas L, SanMartín CD, Sanhueza M, Martin AJM. Filtering of Data-Driven Gene Regulatory Networks Using Drosophila melanogaster as a Case Study. Front Genet 2021; 12:649764. [PMID: 34394179 PMCID: PMC8355599 DOI: 10.3389/fgene.2021.649764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Gene Regulatory Networks (GRNs) allow the study of regulation of gene expression of whole genomes. Among the most relevant advantages of using networks to depict this key process, there is the visual representation of large amounts of information and the application of graph theory to generate new knowledge. Nonetheless, despite the many uses of GRNs, it is still difficult and expensive to assign Transcription Factors (TFs) to the regulation of specific genes. ChIP-Seq allows the determination of TF Binding Sites (TFBSs) over whole genomes, but it is still an expensive technique that can only be applied one TF at a time and requires replicates to reduce its noise. Once TFBSs are determined, the assignment of each TF and its binding sites to the regulation of specific genes is not trivial, and it is often performed by carrying out site-specific experiments that are unfeasible to perform in all possible binding sites. Here, we addressed these relevant issues with a two-step methodology using Drosophila melanogaster as a case study. First, our protocol starts by gathering all transcription factor binding sites (TFBSs) determined with ChIP-Seq experiments available at ENCODE and FlyBase. Then each TFBS is used to assign TFs to the regulation of likely target genes based on the TFBS proximity to the transcription start site of all genes. In the final step, to try to select the most likely regulatory TF from those previously assigned to each gene, we employ GENIE3, a random forest-based method, and more than 9,000 RNA-seq experiments from D. melanogaster. Following, we employed known TF protein-protein interactions to estimate the feasibility of regulatory events in our filtered networks. Finally, we show how known interactions between co-regulatory TFs of each gene increase after the second step of our approach, and thus, the consistency of the TF-gene assignment. Also, we employed our methodology to create a network centered on the Drosophila melanogaster gene Hr96 to demonstrate the role of this transcription factor on mitochondrial gene regulation.
Collapse
Affiliation(s)
- Yesid Cuesta-Astroz
- Colombian Institute of Tropical Medicine, CES University, Medellin, Colombia
| | | | - Leandro Murgas
- Laboratorio de Biologia de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
| | - Carol D SanMartín
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile.,Centro de Investigacíon Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Mario Sanhueza
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Biologia de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
3
|
Brandão SR, Ferreira R, Rocha H. Exploring the contribution of mitochondrial dynamics to multiple acyl-CoA dehydrogenase deficiency-related phenotype. Arch Physiol Biochem 2021; 127:210-216. [PMID: 31215835 DOI: 10.1080/13813455.2019.1628065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mitochondrial fatty acid β-oxidation disorders (FAOD) are among the diseases detected by newborn screening in most developed countries. Alterations of mitochondrial functionality are characteristic of these metabolic disorders. However, many questions remain to be clarified, namely how the interplay between the signaling pathways harbored in mitochondria contributes to the disease-related phenotype. Herein, we overview the role of mitochondria on the regulation of cell homeostasis through the production of ROS, mitophagy, apoptosis, and mitochondrial biogenesis. Emphasis is given to the signaling pathways involving MnSOD, sirtuins and PGC-1α, which seem to contribute to FAOD phenotype, namely to multiple acyl-CoA dehydrogenase deficiency (MADD). The association between phenotype and genotype is not straightforward, suggesting that specific molecular mechanisms may contribute to MADD pathogenesis, making MADD an interesting model to better understand this interplay. However, more work needs to be done envisioning the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sofia R Brandão
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Ricardo Jorge, Porto, Portugal
| |
Collapse
|
4
|
Henriques BJ, Katrine Jentoft Olsen R, Gomes CM, Bross P. Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene 2021; 776:145407. [PMID: 33450351 DOI: 10.1016/j.gene.2021.145407] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Electron transfer flavoprotein (ETF) is an enzyme with orthologs from bacteria to humans. Human ETF is nuclear encoded by two separate genes, ETFA and ETFB, respectively. After translation, the two subunits are imported to the mitochondrial matrix space and assemble into a heterodimer containing one FAD and one AMP as cofactors. ETF functions as a hub taking up electrons from at least 14 flavoenzymes, feeding them into the respiratory chain. This represents a major source of reducing power for the electron transport chain from fatty acid oxidation and amino acid degradation. Transfer of electrons from the donor enzymes to ETF occurs by direct transfer between the enzyme bound flavins, a process that is tightly regulated by the polypeptide chain and by protein:protein interactions. ETF, in turn relays electrons to the iron sulfur cluster of the inner membrane protein ETF:QO, from where they travel via the FAD in ETF:QO to ubiquinone, entering the respiratory chain at the level of complex III. ETF recognizes its dehydrogenase partners via a recognition loop that anchors the protein on its partner followed by dynamic movements of the ETF flavin domain that bring redox cofactors in close proximity, thus promoting electron transfer. Genetic mutations in the ETFA or ETFB genes cause the Mendelian disorder multiple acyl-CoA dehydrogenase deficiency (MADD; OMIM #231680). We here review the knowledge on human ETF and investigations of the effects of disease-associated missense mutations in this protein that have promoted the understanding of the essential role that ETF plays in cellular metabolism and human disease.
Collapse
Affiliation(s)
- Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| |
Collapse
|
5
|
Henriques BJ, Lucas TG, Martins E, Gaspar A, Bandeira A, Nogueira C, Brandão O, Rocha H, Vilarinho L, Gomes CM. Molecular and Clinical Investigations on Portuguese Patients with Multiple acyl-CoA Dehydrogenase Deficiency. Curr Mol Med 2020; 19:487-493. [PMID: 31418342 DOI: 10.2174/1566524019666190507114748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a congenital rare metabolic disease with broad clinical phenotypes and variable evolution. This inborn error of metabolism is caused by mutations in the ETFA, ETFB or ETFDH genes, which encode for the mitochondrial ETF and ETF:QO proteins. A considerable group of patients has been described to respond positively to riboflavin oral supplementation, which constitutes the prototypic treatment for the pathology. OBJECTIVES To report mutations in ETFA, ETFB and ETFDH genes identified in Portuguese patients, correlating, whenever possible, biochemical and clinical outcomes with the effects of mutations on the structure and stability of the affected proteins, to better understand MADD pathogenesis at the molecular level. METHODS MADD patients were identified based on the characteristic urinary profile of organic acids and/or acylcarnitine profiles in blood spots during newborn screening. Genotypic, clinical and biochemical data were collected for all patients. In silico structural analysis was employed using bioinformatic tools carried out in an ETF:QO molecular model for the identified missense mutations. RESULTS A survey describing clinical and biochemical features of eight Portuguese MADD patients was made. Genotype analysis identified five ETFDH mutations, including one extension (p.X618QextX*14), two splice mutations (c.34+5G>C and c.405+3A>T) and two missense mutations (ETF:QO-p.Arg155Gly and ETF:QO-p.Pro534Leu), and one ETFB mutation (ETFβ- p.Arg191Cys). Homozygous patients containing the ETFDH mutations p.X618QextX*14, c.34+5G>C and ETF:QO-p.Arg155Gly, all presented severe (lethal) MADD phenotypes. However, when any of these mutations are in heterozygosity with the known ETF:QO-p.Pro534Leu mild variant, the severe clinical effects are partly and temporarily attenuated. Indeed, the latter destabilizes an ETF-interacting loop, with no major functional consequences. However, the position 155 in ETF:QO is localized at the ubiquinone binding and membrane interacting domain, and is thus expected to perturb protein structure and membrane insertion, with severe functional effects. Structural analysis of molecular models is therefore demonstrated to be a valuable tool to rationalize the effects of mutations in the context of the clinical phenotype severity. CONCLUSION Advanced molecular diagnosis, structural analysis and clinical correlations reveal that MADD patients harboring a severe prognosis mutation in one allele can actually revert to a milder phenotype by complementation with a milder mutation in the other allele. However, such patients are nevertheless in a precarious metabolic balance which can revert to severe fatal outcomes during catabolic stress or secondary pathology, thus requiring strict clinical follow-up.
Collapse
Affiliation(s)
- Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciencias, Universidade de Lisboa, and Departamento de Quimica e Bioquimica, Faculdade de Ciencias, 1749-016 Lisboa, Portugal
| | - Tânia G Lucas
- Biosystems and Integrative Sciences Institute, Faculdade de Ciencias, Universidade de Lisboa, and Departamento de Quimica e Bioquimica, Faculdade de Ciencias, 1749-016 Lisboa, Portugal
| | - Esmeralda Martins
- Centro de Referencia na area de Doencas Hereditarias do Metabolismo, Centro Hospitalar do Porto - CHP, Porto, Portugal
| | - Ana Gaspar
- Unidade de Doencas Metabolicas, Centro Hospitalar Lisboa Norte - Hospital Santa Maria, Lisboa, Portugal
| | - Anabela Bandeira
- Centro de Referencia na area de Doencas Hereditarias do Metabolismo, Centro Hospitalar do Porto - CHP, Porto, Portugal
| | - Célia Nogueira
- Unidade de Rastreio Neonatal, Metabolismo e Genetica, Departamento de Genetica Humana - Instituto Nacional de Saude Doutor Ricardo Jorge, Porto, Portugal
| | - Otilia Brandão
- Servico de Patologia Clinica, Hospital Sao Joao, Porto, Portugal
| | - Hugo Rocha
- Unidade de Rastreio Neonatal, Metabolismo e Genetica, Departamento de Genetica Humana - Instituto Nacional de Saude Doutor Ricardo Jorge, Porto, Portugal
| | - Laura Vilarinho
- Unidade de Rastreio Neonatal, Metabolismo e Genetica, Departamento de Genetica Humana - Instituto Nacional de Saude Doutor Ricardo Jorge, Porto, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciencias, Universidade de Lisboa, and Departamento de Quimica e Bioquimica, Faculdade de Ciencias, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
7
|
Lucas TG, Henriques BJ, Gomes CM. Conformational analysis of the riboflavin-responsive ETF:QO-p.Pro456Leu variant associated with mild multiple acyl-CoA dehydrogenase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140393. [PMID: 32087359 DOI: 10.1016/j.bbapap.2020.140393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023]
Abstract
Multiple-CoA dehydrogenase deficiency (MADD) is an inborn disorder of fatty acid and amino acid metabolism caused by mutations in the genes encoding for human electron transfer flavoprotein (ETF) and its partner electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). Albeit a rare disease, extensive newborn screening programs contributed to a wider coverage of MADD genotypes. However, the impact of non-lethal mutations on ETF:QO function remains scarcely understood from a structural perspective. To this end, we here revisit the relatively common MADD mutation ETF:QO-p.Pro456Leu, in order to clarify how it affects enzyme structure and folding. Given the limitation in recombinant expression of human ETF:QO, we resort to its bacterial homologue from Rhodobacter sphaeroides (Rs), in which the corresponding mutation (p.Pro389Leu) was inserted. The in vitro biochemical and biophysical investigations of the Rs ETF:QO-p.Pro389Leu variant showed that, while the mutation does not significantly affect the protein α/β fold, it introduces some plasticity on the tertiary structure and within flavin interactions. Indeed, in the p.Pro389Leu variant, FAD exhibits a higher thermolability during thermal denaturation and a faster rate of release in temperature-induced dissociation experiments, in comparison to the wild type. Therefore, although this clinical mutation occurs in the ubiquinone domain, its effect likely propagates to the nearby FAD binding domain, probably influencing electron transfer and redox potentials. Overall, our results provide a molecular rational for the decreased enzyme activity observed in patients and suggest that compromised FAD interactions in ETF:QO might account for the known riboflavin responsiveness of this mutation.
Collapse
Affiliation(s)
- Tânia G Lucas
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
8
|
Potential complementation effects of two disease-associated mutations in tetrameric glutaryl-CoA dehydrogenase is due to inter subunit stability-activity counterbalance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140269. [DOI: 10.1016/j.bbapap.2019.140269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/12/2019] [Accepted: 09/01/2019] [Indexed: 11/18/2022]
|
9
|
Xu J, Li D, Lv J, Xu X, Wen B, Lin P, Liu F, Ji K, Shan J, Li H, Li W, Zhao Y, Zhao D, Pok JY, Yan C. ETFDH Mutations and Flavin Adenine Dinucleotide Homeostasis Disturbance Are Essential for Developing Riboflavin-Responsive Multiple Acyl-Coenzyme A Dehydrogenation Deficiency. Ann Neurol 2018; 84:659-673. [PMID: 30232818 DOI: 10.1002/ana.25338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 08/26/2018] [Accepted: 09/09/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Riboflavin-responsive multiple acyl-coenzyme A dehydrogenation deficiency (RR-MADD) is an inherited fatty acid metabolism disorder mainly caused by genetic defects in electron transfer flavoprotein-ubiquinone oxidoreductase (ETF:QO). The variant ETF:QO protein folding deficiency, which can be corrected by therapeutic dosage of riboflavin supplement, has been identified in HEK-293 cells and is believed to be the molecular mechanism of this disease. To verify this hypothesis in vivo, we generated Etfdh (h)A84T knockin (KI) mice. METHODS Tissues from these mice as well as muscle biopsies and fibroblasts from 7 RR-MADD patients were used to examine the flavin adenine dinucleotide (FAD) concentration and ETF:QO protein amount. RESULTS All of the homozygous KI mice (Etfdh (h)A84T/(h)A84T , KI/KI) were initially normal. After being given a high-fat and vitamin B2 -deficient (HF-B2 D) diet for 5 weeks, they developed weight loss, movement ability defects, lipid storage in muscle and liver, and elevated serum acyl-carnitine levels, which are clinically and biochemically similar to RR-MADD patients. Both ETF:QO protein and FAD concentrations were significantly decreased in tissues of HF-B2 D-KI/KI mice and in cultured fibroblasts from RR-MADD patients. After riboflavin treatment, ETF:QO protein increased in proportion to elevated FAD concentrations, but not related to mRNA levels. These results were further confirmed in cultured fibroblasts from RR-MADD patients. INTERPRETATION For the first time, we successfully developed a RR-MADD mice model and confirmed that FAD homeostasis disturbances played a crucial role on the pathomechanism of RR-MADD in this mouse model and culture cells from patients. Supplementation of riboflavin may stabilize variant ETF:QO protein by rebuilding FAD homeostasis. Ann Neurol 2018;84:667-681.
Collapse
Affiliation(s)
- Jingwen Xu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Duoling Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingwei Lv
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Xuebi Xu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Bing Wen
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Pengfei Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China.,Department of Neurobiology, Yale University School of Medicine, New Haven, CT
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingli Shan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Honghao Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Joo Y Pok
- Department of Neurology, Yale University, New Haven, CT
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China.,Laboratory of Mitochondrial Medicine, Qilu Hospital (Qingdao), Qingdao, China
| |
Collapse
|
10
|
Fan X, Xie B, Zou J, Luo J, Qin Z, D'Gama AM, Shi J, Yi S, Yang Q, Wang J, Luo S, Chen S, Agrawal PB, Li Q, Shen Y. Novel ETFDH mutations in four cases of riboflavin responsive multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab Rep 2018; 16:15-19. [PMID: 29988809 PMCID: PMC6031868 DOI: 10.1016/j.ymgmr.2018.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 02/01/2023] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism caused by mutations in EFTA, EFTB, or ETFDH. Many MADD patients are responsive to treatment with riboflavin, termed riboflavin-responsive MADD (RR-MADD). Here, we report three novel mutations and one previously reported mutation in ETFDH in four RR-MADD patients who presented at various ages, and characterize the corresponding changes in ETF-QO protein structure. Clinicians should consider MADD in the differential diagnosis when patients present with muscle weakness and biochemical abnormalities. Gene testing plays a critical role in confirming the diagnosis of MADD, and may not only prevent patients from invasive testing, but also allow timely initiation of riboflavin treatment. The novel variants in ETFDH and the corresponding clinical features reported here enrich the allelic heterogeneity of RR-MADD and provide insight into genotype-phenotype relationships.
Collapse
Affiliation(s)
- Xin Fan
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Bobo Xie
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Jun Zou
- Department of Gastroenterology, The Second Affiliated Hospital, Guangxi Medical University, Nanning 530000, People's Republic of China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Alissa M D'Gama
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Jin Wang
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Shiyu Luo
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Shaoke Chen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China.,Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China.,Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Course MM, Scott AI, Schoor C, Hsieh CH, Papakyrikos AM, Winter D, Cowan TM, Wang X. Phosphorylation of MCAD selectively rescues PINK1 deficiencies in behavior and metabolism. Mol Biol Cell 2018; 29:1219-1227. [PMID: 29563254 PMCID: PMC5935071 DOI: 10.1091/mbc.e18-03-0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PTEN-induced putative kinase 1 (PINK1) is a mitochondria-targeted kinase whose mutations are a cause of Parkinson’s disease. We set out to better understand PINK1’s effects on mitochondrial proteins in vivo. Using an unbiased phosphoproteomic screen in Drosophila, we found that PINK1 mediates the phosphorylation of MCAD, a mitochondrial matrix protein critical to fatty acid metabolism. By mimicking phosphorylation of this protein in a PINK1 null background, we restored PINK1 null’s climbing, flight, thorax, and wing deficiencies. Owing to MCAD’s role in fatty acid metabolism, we examined the metabolic profile of PINK1 null flies, where we uncovered significant disruptions in both acylcarnitines and amino acids. Some of these disruptions were rescued by phosphorylation of MCAD, consistent with MCAD’s rescue of PINK1 null’s organismal phenotypes. Our work validates and extends the current knowledge of PINK1, identifies a novel function of MCAD, and illuminates the need for and effectiveness of metabolic profiling in models of neurodegenerative disease.
Collapse
Affiliation(s)
- Meredith M Course
- Department of Neurosurgery, Stanford University, Stanford, CA 94305.,Neurosciences Graduate Program, Stanford University, Stanford, CA 94305
| | - Anna I Scott
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Carmen Schoor
- Institute for Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Chung-Han Hsieh
- Department of Neurosurgery, Stanford University, Stanford, CA 94305
| | - Amanda M Papakyrikos
- Department of Neurosurgery, Stanford University, Stanford, CA 94305.,Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Tina M Cowan
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305
| |
Collapse
|
12
|
Liang WC, Nishino I. Riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency: A frequent condition in the southern Chinese population. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/ncn3.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Chen Liang
- Department of Pediatrics; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Pediatrics; School of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Ichizo Nishino
- Department of Neuromuscular Research; National Institute of Neuroscience; National Center of Neurology and Psychiatry; Tokyo Japan
- Department of Clinical Development; Translational Medical Center; National Center of Neurology and Psychiatry; Tokyo Japan
| |
Collapse
|