1
|
Oláh J, Norris V, Lehotzky A, Ovádi J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024; 13:338. [PMID: 38391951 PMCID: PMC10886726 DOI: 10.3390/cells13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Neurological disorders such as Parkinsonism cause serious socio-economic problems as there are, at present, only therapies that treat their symptoms. The well-established hallmark alpha-synuclein (SYN) is enriched in the inclusion bodies characteristic of Parkinsonism. We discovered a prominent partner of SYN, termed Tubulin Polymerization Promoting Protein (TPPP), which has important physiological and pathological activities such as the regulation of the microtubule network and the promotion of SYN aggregation. The role of TPPP in Parkinsonism is often neglected in research, which we here attempt to remedy. In the normal brain, SYN and TPPP are expressed endogenously in neurons and oligodendrocytes, respectively, whilst, at an early stage of Parkinsonism, soluble hetero-associations of these proteins are found in both cell types. The cell-to-cell transmission of these proteins, which is central to disease progression, provides a unique situation for specific drug targeting. Different strategies for intervention and for the discovery of biomarkers include (i) interface targeting of the SYN-TPPP hetero-complex; (ii) proteolytic degradation of SYN and/or TPPP using the PROTAC technology; and (iii) depletion of the proteins by miRNA technology. We also discuss the potential roles of SYN and TPPP in the phenotype stabilization of neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Attila Lehotzky
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Judit Ovádi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| |
Collapse
|
2
|
Orosz F. The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One. Microorganisms 2023; 11:2029. [PMID: 37630588 PMCID: PMC10459994 DOI: 10.3390/microorganisms11082029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The unicellular, parasitic fungi of the phylum Sanchytriomycota (sanchytrids) were discovered a few years ago. These unusual chytrid-like fungi parasitize algae. The zoospores of the species of the phylum contain an extremely long kinetosome composed of microtubular singlets or doublets and a non-motile pseudocilium (i.e., a reduced posterior flagellum). Fungi provide an ideal opportunity to test and confirm the correlation between the occurrence of flagellar proteins (the ciliome) and that of the eukaryotic cilium/flagellum since the flagellum occurs in the early-branching phyla and not in terrestrial fungi. Tubulin polymerization promoting protein (TPPP)-like proteins, which contain a p25alpha domain, were also suggested to belong to the ciliome and are present in flagellated fungi. Although sanchytrids have lost many of the flagellar proteins, here it is shown that they possess a DNA sequence possibly encoding long (animal-type) TPPP, but not the fungal-type one characteristic of chytrid fungi. Phylogenetic analysis of p25alpha domains placed sanchytrids into a sister position to Blastocladiomycota, similarly to species phylogeny, with maximal support.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
3
|
Norris V, Oláh J, Krylov SN, Uversky VN, Ovádi J. The Sherpa hypothesis: Phenotype-Preserving Disordered Proteins stabilize the phenotypes of neurons and oligodendrocytes. NPJ Syst Biol Appl 2023; 9:31. [PMID: 37433867 DOI: 10.1038/s41540-023-00291-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Intrinsically disordered proteins (IDPs), which can interact with many partner proteins, are central to many physiological functions and to various pathologies that include neurodegeneration. Here, we introduce the Sherpa hypothesis, according to which a subset of stable IDPs that we term Phenotype-Preserving Disordered Proteins (PPDP) play a central role in protecting cell phenotypes from perturbations. To illustrate and test this hypothesis, we computer-simulate some salient features of how cells evolve and differentiate in the presence of either a single PPDP or two incompatible PPDPs. We relate this virtual experiment to the pathological interactions between two PPDPs, α-synuclein and Tubulin Polymerization Promoting Protein/p25, in neurodegenerative disorders. Finally, we discuss the implications of the Sherpa hypothesis for aptamer-based therapies of such disorders.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Sergey N Krylov
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J1P3, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| |
Collapse
|
4
|
On the TPPP Protein of the Enigmatic Fungus, Olpidium-Correlation between the Incidence of p25alpha Domain and That of the Eukaryotic Flagellum. Int J Mol Sci 2022; 23:ijms232213927. [PMID: 36430412 PMCID: PMC9698843 DOI: 10.3390/ijms232213927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Loss of the flagellum was an important step in the evolution of fungi. The flagellated fungi of the phylum Olpidiomycota are the closest relative of the non-flagellated terrestrial fungi. There are genes encoding proteins, the occurrence of which shows a strong correlation with the incidence of the flagellum. One of these gene/protein families is "TPPP-like proteins" whose main feature is the presence of the p25alpha domain. The functional link between TPPP and flagellum has also been shown. Most of the phyla of flagellated fungi have been known to contain TPPP-like proteins but Olpidiomycota was an exception. This study demonstrates that Olpidium bornovanus, similarly to some fungi of Chytridiomycota and Blastocladiomycota, has a "fungal-type" TPPP characterized by the presence of two (a complete and an incomplete) p25alpha domains.
Collapse
|
5
|
Oláh J, Lehotzky A, Szénási T, Berki T, Ovádi J. Modulatory Role of TPPP3 in Microtubule Organization and Its Impact on Alpha-Synuclein Pathology. Cells 2022; 11:cells11193025. [PMID: 36230985 PMCID: PMC9564178 DOI: 10.3390/cells11193025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease is characterized by locomotion deficits, dopaminergic neuronal loss and alpha-synuclein (SYN) aggregates; the Tubulin Polymerization Promoting Protein (TPPP/p25 or TPPP1) is also implicated in these processes. The moonlighting and chameleon TPPP1 modulates the dynamics/stability of the multifunctional microtubule network by promoting its acetylation and bundling. Previously, we identified the microtubule-associated TPPP3, a homologue of TPPP1 lacking its N-terminus; however, its involvement in physiological or pathological processes was not elucidated. In this work, we have shown the modulatory role of TPPP3, similarly to TPPP1, in microtubule organization, as well as its homo- and hetero-associations with TPPP1. TPPP3, in contrast to TPPP1, virtually does not bind to SYN; consequently, it does not promote SYN aggregation. Its anti-aggregative potency is achieved by counteracting the formation of the TPPP1–SYN pathological complex/aggregation leading to Parkinsonism. The interactions of TPPP3 have been determined and quantified in vitro with recombinant human proteins, cell extracts and in living human cells using different methods including bifunctional fluorescence complementation. The tight association of TPPP3 with TPPP1, but not with SYN, may ensure a unique mechanism for its inhibitory effect. TPPP3 or its selected fragments may become a leading agent for developing anti-Parkinson agents.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (J.O.); (J.O.); Tel.: +36-1-3826-742 (J.O.); +36-1-3826-714 (J.O.)
| | - Attila Lehotzky
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Tibor Szénási
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (J.O.); (J.O.); Tel.: +36-1-3826-742 (J.O.); +36-1-3826-714 (J.O.)
| |
Collapse
|
6
|
Oláh J, Szénási T, Lehotzky A, Norris V, Ovádi J. Challenges in Discovering Drugs That Target the Protein-Protein Interactions of Disordered Proteins. Int J Mol Sci 2022; 23:ijms23031550. [PMID: 35163473 PMCID: PMC8835748 DOI: 10.3390/ijms23031550] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Protein–protein interactions (PPIs) outnumber proteins and are crucial to many fundamental processes; in consequence, PPIs are associated with several pathological conditions including neurodegeneration and modulating them by drugs constitutes a potentially major class of therapy. Classically, however, the discovery of small molecules for use as drugs entails targeting individual proteins rather than targeting PPIs. This is largely because discovering small molecules to modulate PPIs has been seen as extremely challenging. Here, we review the difficulties and limitations of strategies to discover drugs that target PPIs directly or indirectly, taking as examples the disordered proteins involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, 1117 Budapest, Hungary; (J.O.); (T.S.); (A.L.)
| | - Tibor Szénási
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, 1117 Budapest, Hungary; (J.O.); (T.S.); (A.L.)
| | - Attila Lehotzky
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, 1117 Budapest, Hungary; (J.O.); (T.S.); (A.L.)
| | - Victor Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, 1117 Budapest, Hungary; (J.O.); (T.S.); (A.L.)
- Correspondence:
| |
Collapse
|
7
|
Anti-Aggregative Effect of the Antioxidant DJ-1 on the TPPP/p25-Derived Pathological Associations of Alpha-Synuclein. Cells 2021; 10:cells10112909. [PMID: 34831132 PMCID: PMC8616041 DOI: 10.3390/cells10112909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
DJ-1, a multi-functional protein with antioxidant properties, protects dopaminergic neurons against Parkinson’s disease (PD). The oligomerization/assembly of alpha-synuclein (SYN), promoted by Tubulin Polymerization Promoting Protein (TPPP/p25), is fatal in the early stage of PD. The pathological assembly of SYN with TPPP/p25 inhibits their proteolytic degradation. In this work, we identified DJ-1 as a new interactive partner of TPPP/p25, and revealed its influence on the association of TPPP/p25 with SYN. DJ-1 did not affect the TPPP/p25-derived tubulin polymerization; however, it did impede the toxic assembly of TPPP/p25 with SYN. The interaction of DJ-1 with TPPP/p25 was visualized in living human cells by fluorescence confocal microscopy coupled with Bifunctional Fluorescence Complementation (BiFC). While the transfected DJ-1 displayed homogeneous intracellular distribution, the TPPP/p25-DJ-1 complex was aligned along the microtubule network. The anti-aggregative effect of DJ-1 on the pathological TPPP/p25-SYN assemblies was established by the decrease in the intensity of their intracellular fluorescence (BiFC signal) and the increase in the proteolytic degradation of SYN complexed with TPPP/p25 due to the DJ-1-derived disassembly of SYN with TPPP/p25. These data obtained with HeLa and SH-SY5Y cells revealed the protective effect of DJ-1 against toxic SYN assemblies, which assigns a new function to the antioxidant sensor DJ-1.
Collapse
|
8
|
Orosz F. Apicortin, a Constituent of Apicomplexan Conoid/Apical Complex and Its Tentative Role in Pathogen-Host Interaction. Trop Med Infect Dis 2021; 6:tropicalmed6030118. [PMID: 34209186 PMCID: PMC8293464 DOI: 10.3390/tropicalmed6030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
In 2009, apicortin was identified in silico as a characteristic protein of apicomplexans that also occurs in the placozoa, Trichoplax adhaerens. Since then, it has been found that apicortin also occurs in free-living cousins of apicomplexans (chromerids) and in flagellated fungi. It contains a partial p25-α domain and a doublecortin (DCX) domain, both of which have tubulin/microtubule binding properties. Apicortin has been studied experimentally in two very important apicomplexan pathogens, Toxoplasma gondii and Plasmodium falciparum. It is localized in the apical complex in both parasites. In T. gondii, apicortin plays a key role in shaping the structure of a special tubulin polymer, conoid. In both parasites, its absence or downregulation has been shown to impair pathogen–host interactions. Based on these facts, it has been suggested as a therapeutic target for treatment of malaria and toxoplasmosis.
Collapse
Affiliation(s)
- Ferenc Orosz
- Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
9
|
Orosz F. Truncated TPPP - An Endopterygota-specific protein. Heliyon 2021; 7:e07135. [PMID: 34136696 PMCID: PMC8180608 DOI: 10.1016/j.heliyon.2021.e07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/18/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
TPPP proteins exhibiting microtubule stabilizing function constitute a eukaryotic protein superfamily, characterized by the presence of the p25alpha domain of various lengths. Vertebrate species possess three TPPP paralogs; all of them possess a full-length p25alpha domain of 160-170 amino acids and are encoded by three exons. Species of Endopterygota (Holometabola) have, besides a full-size TPPP ortholog, a protein with a truncated p25alpha domain as well, where the last coding exon, responsible for microtubule binding, is missing. It is not the result of an alternative splicing but is coded by another gene. In Drosophila melanogaster, they are named as CG45057 (long-type) and CG6709 (truncated). The truncated protein has been found in the Endopterygota orders Diptera, Coleoptera, Hymenoptera, Lepidoptera and Raphidioptera. In Lepidoptera, in several superfamilies (Gelechioidea, Bombycoidea, Noctuoidea, Pyraloidea) two paralogs of the truncated TPPP occur. Truncated orthologs (CG6709) were not found in other insects or in arthropods and are absent in any other organism, as well, while the long-type TPPPs (CG45057 orthologs) occur commonly in all animals. Thus it seems that CG6709 orthologs occur only in insects undergoing on metamorphosis.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
10
|
Lehotzky A, Oláh J, Fekete JT, Szénási T, Szabó E, Győrffy B, Várady G, Ovádi J. Co-Transmission of Alpha-Synuclein and TPPP/p25 Inhibits Their Proteolytic Degradation in Human Cell Models. Front Mol Biosci 2021; 8:666026. [PMID: 34084775 PMCID: PMC8167055 DOI: 10.3389/fmolb.2021.666026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
The pathological association of alpha-synuclein (SYN) and Tubulin Polymerization Promoting Protein (TPPP/p25) is a key factor in the etiology of synucleinopathies. In normal brains, the intrinsically disordered SYN and TPPP/p25 are not found together but exist separately in neurons and oligodendrocytes, respectively; in pathological states, however, they are found in both cell types due to their cell-to-cell transmission. The autophagy degradation of the accumulated/assembled SYN has been considered as a potential therapeutic target. We have shown that the hetero-association of SYN with TPPP/p25 after their uptake from the medium by human cells (which mimics cell-to-cell transmission) inhibits both their autophagy- and the ubiquitin-proteasome system-derived elimination. These results were obtained by ELISA, Western blot, FACS and immunofluorescence confocal microscopy using human recombinant proteins and living human cells; ANOVA statistical analysis confirmed that TPPP/p25 counteracts SYN degradation by hindering the autophagy maturation at the stage of LC3B-SQSTM1/p62-derived autophagosome formation and its fusion with lysosome. Recently, fragments of TPPP/p25 that bind to the interface between the two hallmark proteins have been shown to inhibit their pathological assembly. In this work, we show that the proteolytic degradation of SYN on its own is more effective than when it is complexed with TPPP/p25. The combined strategy of TPPP/p25 fragments and proteolysis may ensure prevention and/or elimination of pathological SYN assemblies.
Collapse
Affiliation(s)
- Attila Lehotzky
- Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| | - Judit Oláh
- Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| | - János Tibor Fekete
- Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| | - Tibor Szénási
- Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| | - Edit Szabó
- Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| | - Balázs Győrffy
- Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| | - György Várady
- Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| | - Judit Ovádi
- Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary
| |
Collapse
|
11
|
Orosz F. On the TPPP-like proteins of flagellated fungi. Fungal Biol 2020; 125:357-367. [PMID: 33910677 DOI: 10.1016/j.funbio.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
TPPP-like proteins, exhibiting microtubule stabilizing function, constitute a eukaryotic superfamily, characterized by the presence of the p25alpha domain. TPPPs in the strict sense are present in animals except Trichoplax adhaerens, which instead contains apicortin where a part of the p25alpha domain is combined with a DCX domain. Apicortin is absent in other animals and occurs mostly in the protozoan phylum, Apicomplexa. A strong correlation between the occurrence of p25alpha domain and that of the eukaryotic cilium/flagellum was suggested. Species of the deeper branching clades of Fungi possess flagellum but others lost it thus investigation of fungal genomes can help testing of this suggestion. Indeed, these proteins are present in early branching Fungi. Both TPPP and apicortin are present in Rozellomycota (Cryptomycota) and Chytridiomycota, TPPP in Blastocladiomycota, apicortin in Neocallimastigomycota, Monoblepharomycota and the non-flagellated Mucoromycota. Beside the "normal" TPPP occurring in animals, a special, fungal-type TPPP is also present in Fungi, in which a part of the p25alpha domain is duplicated. Dikarya, the most developed subkingdom of Fungi, lacks both flagellum and TPPPs. Thus it is strengthened that each ciliated/flagellated organism contains p25alpha domain-containing proteins while there are very few non-flagellated ones where p25alpha domain can be found.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
12
|
Oláh J, Lehotzky A, Szunyogh S, Szénási T, Orosz F, Ovádi J. Microtubule-Associated Proteins with Regulatory Functions by Day and Pathological Potency at Night. Cells 2020; 9:E357. [PMID: 32033023 PMCID: PMC7072251 DOI: 10.3390/cells9020357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeleton, including the microtubule network. Microtubules play crucial roles achieved by their decoration with proteins/enzymes as well as by posttranslational modifications. This review focuses on the Tubulin Polymerization Promoting Protein (TPPP/p25), a new microtubule associated protein, on its "regulatory functions by day and pathological functions at night". Physiologically, the moonlighting TPPP/p25 modulates the dynamics and stability of the microtubule network by bundling microtubules and enhancing the tubulin acetylation due to the inhibition of tubulin deacetylases. The optimal endogenous TPPP/p25 level is crucial for its physiological functions, to the differentiation of oligodendrocytes, which are the major constituents of the myelin sheath. Pathologically, TPPP/p25 forms toxic oligomers/aggregates with α-synuclein in neurons and oligodendrocytes in Parkinson's disease and Multiple System Atrophy, respectively; and their complex is a potential therapeutic drug target. TPPP/p25-derived microtubule hyperacetylation counteracts uncontrolled cell division. All these issues reveal the anti-mitotic and α-synuclein aggregation-promoting potency of TPPP/p25, consistent with the finding that Parkinson's disease patients have reduced risk for certain cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary; (J.O.); (A.L.); (S.S.); (T.S.); (F.O.)
| |
Collapse
|
13
|
Interactions between two regulatory proteins of microtubule dynamics, HDAC6, TPPP/p25, and the hub protein, DYNLL/LC8. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118556. [PMID: 31505170 DOI: 10.1016/j.bbamcr.2019.118556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
Abstract
Degradation of unwanted proteins is important in protein quality control cooperating with the dynein/dynactin-mediated trafficking along the acetylated microtubule (MT) network. Proteins associated directly/indirectly with tubulin/MTs play crucial roles in both physiological and pathological processes. Our studies focus on the interrelationship of the tubulin deacetylase HDAC6, the MT-associated TPPP/p25 with its deacetylase inhibitory potency and the hub dynein light chain DYNLL/LC8, constituent of dynein and numerous other protein complexes. In this paper, evidence is provided for the direct interaction of DYNLL/LC8 with TPPP/p25 and HDAC6 and their assembly into binary/ternary complexes with functional potency. The in vitro binding data was obtained with recombinant proteins and used for mathematical modelling. These data and visualization of their localizations by bimolecular fluorescence complementation technology and immunofluorescence microscopy in HeLa cells revealed the promoting effect of TPPP/p25 on the interaction of DYNLL/LC8 with both tubulin and HDAC6. Localization of the LC8-2-TPPP/p25 complex was observed on the MT network in contrast to the LC8-2-HDAC6 complex, which was partly translocated to the nucleus. LC8-2 did not influence directly the acetylation of the MT network. However, the binding of TPPP/p25 to a new binding site of DYNLL/LC8, outside the canonical binding groove, counteracted the TPPP/p25-derived hyperacetylation of the MT network. Our data suggest that multiple associations of the regulatory proteins of the MT network could ensure fine tuning in the regulation of the intracellular trafficking process either by the complexation of DYNLL/LC8 with new partners or indirectly by the modulation of the acetylation level of the MT network.
Collapse
|
14
|
Oláh J, Ovádi J. Pharmacological targeting of α-synuclein and TPPP/p25 in Parkinson's disease: challenges and opportunities in a Nutshell. FEBS Lett 2019; 593:1641-1653. [PMID: 31148150 DOI: 10.1002/1873-3468.13464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023]
Abstract
With the aging of population, neurological disorders, and especially disorders involving defects in protein conformation (also known as proteopathies) pose a serious socio-economic problem. So far there is no effective treatment for most proteopathies, including Parkinson's disease (PD). The mechanism underlying PD pathogenesis is largely unknown, and the hallmark proteins, α-synuclein (SYN) and tubulin polymerization promoting protein (TPPP/p25) are challenging drug targets. These proteins are intrinsically disordered with high conformational plasticity, and have diverse physiological and pathological functions. In the healthy brain, SYN and TPPP/p25 occur in neurons and oligodendrocytes, respectively; however, in PD and multiple system atrophy, they are co-enriched and co-localized in both cell types, thereby marking pathogenesis. Although large inclusions appear at a late disease stage, small, soluble assemblies of SYN promoted by TPPP/p25 are pathogenic. In the light of these issues, we established a new innovative strategy for the validation of a specific drug target based upon the identification of contact surfaces of the pathological SYN-TPPP/p25 complex that may lead to the development of peptidomimetic foldamers suitable for pharmaceutical intervention.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Ovádi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
15
|
Tripon RG, Oláh J, Nasir T, Csincsik L, Li CL, Szunyogh S, Gong H, Flinn JM, Ovádi J, Lengyel I. Localization of the zinc binding tubulin polymerization promoting protein in the mice and human eye. J Trace Elem Med Biol 2018; 49:222-230. [PMID: 29317136 DOI: 10.1016/j.jtemb.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
Tubulin Polymerization Promoting Protein (TPPP/p25) modulates the dynamics and stability of the microtubule network by its bundling and acetylation enhancing activities that can be modulated by the binding of zinc to TPPP/p25. Its expression is essential for the differentiation of oligodendrocytes, the major constituents of the myelin sheath, and has been associated with neuronal inclusions. In this paper, evidence is provided for the expression and localization of TPPP/p25 in the zinc-rich retina and in the oligodendrocytes in the optic nerve. Localization of TPPP/p25 was established by confocal microscopy using calbindin and synaptophysin as markers of specific striations in the inner plexiform layer (IPL) and presynaptic terminals, respectively. Postsynaptic nerve terminals in striations S1, S3 and S5 in the IPL and a subset of amacrine cells show immunopositivity against TPPP/p25 both in mice and human eyes. The co-localization of TPPP/p25 with acetylated tubulin was detected in amacrine cells, oligodendrocyte cell bodies and in synapses in the IPL. Quantitative Western blot revealed that the TPPP/p25 level in the retina was 0.05-0.13 ng/μg protein, comparable to that in the brain. There was a central (from optic nerve head) to peripheral retinal gradient in TPPP/p25 protein levels. Our in vivo studies revealed that the oral zinc supplementation of mice significantly increased TPPP/p25 as well as acetylated tubulin levels in the IPL. These results suggest that TPPP/p25, a microtubule stabilizer can play a role in the organization and reorganization of synaptic connections and visual integration in the eye.
Collapse
Affiliation(s)
- Robert G Tripon
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Department of Histology, University of Medicine and Pharmacy, Tîrgu Mureş, Romania.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Tajwar Nasir
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Lajos Csincsik
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| | - Chee Lok Li
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Sándor Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, MA, USA.
| | - Jane M Flinn
- Department of Psychology, George Mason University Fairfax, VA, USA.
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Imre Lengyel
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| |
Collapse
|
16
|
Modulation Of Microtubule Acetylation By The Interplay Of TPPP/p25, SIRT2 And New Anticancer Agents With Anti-SIRT2 Potency. Sci Rep 2017; 7:17070. [PMID: 29213065 PMCID: PMC5719079 DOI: 10.1038/s41598-017-17381-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
Abstract
The microtubule network exerts multifarious functions controlled by its decoration with various proteins and post-translational modifications. The disordered microtubule associated Tubulin Polymerization Promoting Protein (TPPP/p25) and the NAD+-dependent tubulin deacetylase sirtuin-2 (SIRT2) play key roles in oligodendrocyte differentiation by acting as dominant factors in the organization of myelin proteome. Herein, we show that SIRT2 impedes the TPPP/p25-promoted microtubule assembly independently of NAD+; however, the TPPP/p25-assembled tubulin ultrastructures were resistant against SIRT2 activity. TPPP/p25 counteracts the SIRT2-derived tubulin deacetylation producing enhanced microtubule acetylation. The inhibition of the SIRT2 deacetylase activity by TPPP/p25 is evolved by the assembly of these tubulin binding proteins into a ternary complex, the concentration-dependent formation of which was quantified by experimental-based mathematical modelling. Co-localization of the SIRT2-TPPP/p25 complex on the microtubule network was visualized in HeLa cells by immunofluorescence microscopy using Bimolecular Fluorescence Complementation. We also revealed that a new potent SIRT2 inhibitor (MZ242) and its proteolysis targeting chimera (SH1) acting together with TPPP/p25 provoke microtubule hyperacetylation, which is coupled with process elongation only in the case of the degrader SH1. Both the structural and the functional effects manifesting themselves by this deacetylase proteome could lead to the fine-tuning of the regulation of microtubule dynamics and stability.
Collapse
|
17
|
Tammana D, Tammana TVS. Chlamydomonas FAP265 is a tubulin polymerization promoting protein, essential for flagellar reassembly and hatching of daughter cells from the sporangium. PLoS One 2017; 12:e0185108. [PMID: 28931065 PMCID: PMC5607191 DOI: 10.1371/journal.pone.0185108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Tubulin polymerization promoting proteins (TPPPs) belong to a family of neomorphic moon lighting proteins, involved in various physiological and pathological conditions. In physiological conditions, TPPPs play an important role in microtubule dynamics regulating mitotic spindle assembly and in turn cell proliferation. In pathological situations, TPPPs interact with α-synuclein and β-amyloid and promote their aggregation leading to Parkinson’s disease and multiple system atrophy. Orthologs of TPPP family proteins were identified in ciliary proteomes from various organisms including Chlamydomonas but their role in ciliogenesis was not known. Here we showed that Flagellar Associated Protein, FAP265, a Chlamydomonas homologue of TPPP family proteins, localizes in the cytosol, at the basal bodies and in the flagella of vegetative Chlamydomonas cells. During cell division, the protein was found as a distinct spot in the nucleus and at the cleavage furrow which forms between the daughter cells. Further null mutants of Chlamydomonas FAP265 protein, fap265, showed severe defects in hatching from the mother sporangium. Daughter cells of fap265 were significantly larger in size compared with wild type cells. Moreover, the daughter cells present within the mother sporangium failed to form flagella before hatching. They reassembled their flagella only after hatching from the sporangium suggesting that FAP265 plays an important role in flagellar reassembly after cell division.
Collapse
Affiliation(s)
- Damayanti Tammana
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, Karnataka, India
| | | |
Collapse
|
18
|
Oláh J, Bertrand P, Ovádi J. Role of the microtubule-associated TPPP/p25 in Parkinson's and related diseases and its therapeutic potential. Expert Rev Proteomics 2017; 14:301-309. [PMID: 28271739 DOI: 10.1080/14789450.2017.1304216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The discovery and development of therapeutic strategies for the treatments of Parkinson's disease (PD) and other synucleinopathies are limited by a lack of understanding of the pathomechanisms and their connection with different diseases such as cancers. Areas covered: The hallmarks of these diseases are frequently multifunctional disordered proteins displaying moonlighting and/or chameleon features, which are challenging drug targets. A representative of these proteins is the disordered Tubulin Polymerization Promoting Protein (TPPP/p25) expressed specifically in oligodendrocytes (OLGs) in normal brain. Its non-physiological level is tightly related to the etiology of PD and Multiple System Atrophy (TPPP/p25 enrichment in inclusions of neurons and OLGs, respectively), multiple sclerosis (TPPP/p25-positive OLG destruction), as well as glioma (loss of TPPP/p25 expression). The established anti-proliferative potency of TPPP/p25 may raise its influence in cancer development. The recognition that whereas too much TPPP/p25 could kill neurons in PD, but its loss keeps cells alive in cancer could contribute to our understanding of the interrelationship of 'TPPP/p25 diseases'. Expert commentary: The knowledge accumulated so far underlines the key roles of the multifunctional TPPP/p25 in both physiological and diverse pathological processes, consequently its validation as drug target sorely needs a new innovative strategy that is briefly reviewed here.
Collapse
Affiliation(s)
- Judit Oláh
- a Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Philippe Bertrand
- b Institute of Chemistry for Materials and Medias, UMR CNRS 7285, University of Poitiers, 4 Rue Michel Brunet , TSA 51106 Poitiers cedex 9, France.,c REpiCGO network, Cancéropôle Grand Ouest, Maison de la Recherche en Santé, 63, quai Magellan 44000 Nantes , France
| | - Judit Ovádi
- a Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
19
|
Oláh J, Szénási T, Szabó A, Kovács K, Lőw P, Štifanić M, Orosz F. Tubulin Binding and Polymerization Promoting Properties of Tubulin Polymerization Promoting Proteins Are Evolutionarily Conserved. Biochemistry 2017; 56:1017-1024. [PMID: 28106390 DOI: 10.1021/acs.biochem.6b00902] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tubulin polymerization promoting proteins (TPPPs) constitute a eukaryotic protein family. There are three TPPP paralogs in the human genome, denoted as TPPP1-TPPP3. TPPP1 and TPPP3 are intrinsically unstructured proteins (IUPs) that bind and polymerize tubulin and stabilize microtubules, but TPPP2 does not. Vertebrate TPPPs originated from the ancient invertebrate TPPP by two-round whole-genome duplication; thus, whether the tubulin/microtubule binding function of TPPP1 and TPPP3 is a newly acquired property or was present in the invertebrate orthologs (generally one TPPP per species) has been an open question. To answer this question, we investigated a TPPP from a simple and early branching animal, the sponge Suberites domuncula. Bioinformatics, biochemical, immunochemical, spectroscopic, and electron microscopic data showed that the properties of the sponge protein correspond to those of TPPP1; namely, it is an IUP that strongly binds tubulin and induces its polymerization, proving that these features of animal TPPPs have been evolutionarily conserved.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Tibor Szénási
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Adél Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Kinga Kovács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Péter Lőw
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University , Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Mauro Štifanić
- Department of Natural and Health Studies, Juraj Dobrila University of Pula , Zagrebačka 30, HR-52100 Pula, Croatia
| | - Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
20
|
Oláh J, Szénási T, Szunyogh S, Szabó A, Lehotzky A, Ovádi J. Further evidence for microtubule-independent dimerization of TPPP/p25. Sci Rep 2017; 7:40594. [PMID: 28074911 PMCID: PMC5225419 DOI: 10.1038/srep40594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
Abstract
Tubulin Polymerization Promoting Protein (TPPP/p25) is a brain-specific disordered protein that modulates the dynamics and stability of the microtubule network by its assembly promoting, cross-linking and acetylation enhancing activities. In normal brain it is expressed primarily in differentiated oligodendrocytes; however, at pathological conditions it is enriched in inclusions of both neurons and oligodendrocytes characteristic for Parkinson’s disease and multiple system atrophy, respectively. The objective of this paper is to highlight a critical point of a recently published Skoufias’s paper in which the crucial role of the microtubules in TPPP/p25 dimerization leading to microtubule bundling was suggested. However, our previous and present data provide evidence for the microtubule-independent dimerization of TPPP/p25 and its stabilization by disulphide bridges. In addition, our bimolecular fluorescence complementation experiments revealed the dimerization ability of both the full length and the terminal-free (CORE) TPPP/p25 forms, however, while TPPP/p25 aligned along the bundled microtubule network, the associated CORE segments distributed mostly homogeneously within the cytosol. Now, we identified a molecular model from the possible ones suggested in the Skoufias’s paper that could be responsible for stabilization of the microtubule network in the course of the oligodendrocyte differentiation, consequently in the constitution of the myelin sheath.
Collapse
Affiliation(s)
- J Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - T Szénási
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - S Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - A Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - A Lehotzky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - J Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
21
|
Szénási T, Oláh J, Szabó A, Szunyogh S, Láng A, Perczel A, Lehotzky A, Uversky VN, Ovádi J. Challenging drug target for Parkinson's disease: Pathological complex of the chameleon TPPP/p25 and alpha-synuclein proteins. Biochim Biophys Acta Mol Basis Dis 2016; 1863:310-323. [PMID: 27671864 DOI: 10.1016/j.bbadis.2016.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/02/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022]
Abstract
The hallmarks of Parkinson's disease and other synucleinopathies, Tubulin Polymerization Promoting Protein (TPPP/p25) and α-synuclein (SYN) have two key features: they are disordered and co-enriched/co-localized in brain inclusions. These Neomorphic Moonlighting Proteins display both physiological and pathological functions due to their interactions with distinct partners. To achieve the selective targeting of the pathological TPPP/p25-SYN but not the physiological TPPP/p25-tubulin complex, their interfaces were identified as a specific innovative strategy for the development of anti-Parkinson drugs. Therefore, the interactions of TPPP/p25 with tubulin and SYN were characterized which suggested the involvements of the 178-187 aa and 147-156 aa segments in the complexation of TPPP/p25 with tubulin and SYN, respectively. However, various truncated and deletion mutants reduced but did not abolish the interactions except one mutant; in addition synthetized fragments corresponding to the potential binding segments of TPPP/p25 failed to interact with SYN. In fact, the studies of the multiple interactions at molecular and cellular levels revealed the high conformational plasticity, chameleon feature, of TPPP/p25 that ensures exceptional functional resilience; the lack of previously identified binding segments could be replaced by other segments. The experimental results are underlined by distinct bioinformatics tools. All these data revealed that although targeting chameleon proteins is a challenging task, nevertheless, the validation of a drug target can be achieved by identifying the interface of complexes of the partner proteins existing at the given pathological conditions.
Collapse
Affiliation(s)
- Tibor Szénási
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Judit Oláh
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Adél Szabó
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Sándor Szunyogh
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - András Láng
- MTA-ELTE, Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary.
| | - András Perczel
- MTA-ELTE, Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary; Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary.
| | - Attila Lehotzky
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 33612 Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Judit Ovádi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary.
| |
Collapse
|
22
|
Szunyogh S, Oláh J, Szénási T, Szabó A, Ovádi J. Targeting the interface of the pathological complex of α-synuclein and TPPP/p25. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2653-61. [PMID: 26407520 DOI: 10.1016/j.bbadis.2015.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022]
Abstract
The pathological interaction of intrinsically disordered proteins, such as α-synuclein (SYN) and Tubulin Polymerization Promoting Protein (TPPP/p25), is often associated with neurodegenerative disorders. These hallmark proteins are co-enriched and co-localized in brain inclusions of Parkinson's disease and other synucleinopathies; yet, their successful targeting does not provide adequate effect due to their multiple functions. Here we characterized the interactions of the human recombinant wild type SYN, its truncated forms (SYN(1-120), SYN(95-140)), a synthetized peptide (SYN(126-140)) and a proteolytic fragment (SYN(103-140)) with TPPP/p25 to identify the SYN segment involved in the interaction. The binding of SYN(103-140) to TPPP/p25 detected by ELISA suggested the involvement of a segment within the C-terminal of SYN. The studies performed with ELISA, Microscale Thermophoresis and affinity chromatography proved that SYN(95-140) and SYN(126-140) - in contrast to SYN(1-120) - displayed significant binding to TPPP/p25. Fluorescence assay with ANS, a molten globule indicator, showed that SYN, but not SYN(1-120) abolished the zinc-induced local folding of both the full length as well as the N- and C-terminal-free (core) TPPP/p25; SYN(95-140) and SYN(126-140) were effective as well. The aggregation-prone properties of the SYN species with full length or core TPPP/p25 visualized by immunofluorescent microscopy demonstrated that SYN(95-140) and SYN(126-140), but not SYN(1-120), induced co-enrichment and massive intracellular aggregation after their premixing and uptake from the medium. These data with their innovative impact could contribute to the development of anti-Parkinson drugs with unique specificity by targeting the interface of the pathological TPPP/p25-SYN complex.
Collapse
Affiliation(s)
- Sándor Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Tibor Szénási
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Adél Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| |
Collapse
|
23
|
DeBonis S, Neumann E, Skoufias DA. Self protein-protein interactions are involved in TPPP/p25 mediated microtubule bundling. Sci Rep 2015; 5:13242. [PMID: 26289831 PMCID: PMC4542545 DOI: 10.1038/srep13242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
TPPP/p25 is a microtubule-associated protein, detected in protein inclusions associated with various neurodegenerative diseases. Deletion analysis data show that TPPP/p25 has two microtubule binding sites, both located in intrinsically disordered domains, one at the N-terminal and the other in the C-terminal domain. In copolymerization assays the full-length protein exhibits microtubule stimulation and bundling activity. In contrast, at the same ratio relative to tubulin, truncated forms of TPPP/p25 exhibit either lower or no microtubule stimulation and no bundling activity, suggesting a cooperative phenomenon which is enhanced by the presence of the two binding sites. The binding characteristics of the N- and C-terminally truncated proteins to taxol-stabilized microtubules are similar to the full-length protein. However, the C-terminally truncated TPPP/p25 shows a lower Bmax for microtubule binding, suggesting that it may bind to a site of tubulin that is masked in microtubules. Bimolecular fluorescent complementation assays in cells expressing combinations of various TPPP/p25 fragments, but not that of the central folded domain, resulted in the generation of a fluorescence signal colocalized with perinuclear microtubule bundles insensitive to microtubule inhibitors. The data suggest that the central folded domain of TPPP/p25 following binding to microtubules can drive s homotypic protein-protein interactions leading to bundled microtubules.
Collapse
Affiliation(s)
- Salvatore DeBonis
- Université de Grenoble Alpes, F-38044 Grenoble, France.,CNRS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Emmanuelle Neumann
- Université de Grenoble Alpes, F-38044 Grenoble, France.,CNRS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Dimitrios A Skoufias
- Université de Grenoble Alpes, F-38044 Grenoble, France.,CNRS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| |
Collapse
|
24
|
Abstract
Neomorphic moonlighting proteins perform distinct functions under physiological and pathological conditions without alterations at the gene level. The disordered tubulin-polymerization-promoting protein (TPPP/p25), a prototype of neomorphic moonlighting proteins, modulates the dynamics and stability of the microtubule system via its bundling and tubulin acetylation-promoting activities. These physiological functions are mediated by its direct associations with tubulin/microtubules as well as tubulin deacetylases such as histone deacetylase (HDAC) 6. In a normal brain, TPPP/p25 is expressed in oligodendrocytes and plays a crucial role in the formation of projections in the course of differentiation required for axon ensheathment. Under pathological conditions, TPPP/p25 interacts with α-synuclein, an aberrant protein-protein interaction resulting in aggregation leading to the formation of inclusions as clinical symptoms. The co-enrichment and co-localization of TPPP/p25 and α-synuclein were established in human-brain inclusions characteristic of Parkinson's disease (PD) and other synucleinopathies. The binding segments on TPPP/p25 involved in the physiological and the pathological interactions were identified and validated at molecular and cellular levels using recombinant proteins and transfected HeLa and inducible Chinese-hamster ovary (CHO) 10 cells expressing TPPP/p25. Our finding that distinct motifs are responsible for the neomorphic moonlighting feature of TPPP/p25, has powerful innovative effects in anti-Parkinson's disease drug research.
Collapse
|