1
|
Kondracki B, Kłoda M, Jusiak-Kłoda A, Kondracka A, Waciński J, Waciński P. MicroRNA Expression in Patients with Coronary Artery Disease and Hypertension-A Systematic Review. Int J Mol Sci 2024; 25:6430. [PMID: 38928136 PMCID: PMC11204345 DOI: 10.3390/ijms25126430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Coronary artery disease (CAD) and hypertension significantly contribute to cardiovascular morbidity and mortality. MicroRNAs (miRNAs) have recently emerged as promising biomarkers and therapeutic targets for these conditions. This systematic review conducts a thorough analysis of the literature, with a specific focus on investigating miRNA expression patterns in patients with CAD and hypertension. This review encompasses an unspecified number of eligible studies that employed a variety of patient demographics and research methodologies, resulting in diverse miRNA expression profiles. This review highlights the complex involvement of miRNAs in CAD and hypertension and the potential for advances in diagnostic and therapeutic strategies. Future research endeavors are imperative to validate these findings and elucidate the precise roles of miRNAs in disease progression, offering promising avenues for innovative diagnostic tools and targeted interventions.
Collapse
Affiliation(s)
- Bartosz Kondracki
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| | - Mateusz Kłoda
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| | - Anna Jusiak-Kłoda
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jakub Waciński
- Department of Clinical Genetics, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Piotr Waciński
- Department of Cardiology, Medical University of Lublin, 20-059 Lublin, Poland; (B.K.); (M.K.); (A.J.-K.); (P.W.)
| |
Collapse
|
2
|
Aharon-Yariv A, Wang Y, Ahmed A, Delgado-Olguín P. Integrated small RNA, mRNA and protein omics reveal a miRNA network orchestrating metabolic maturation of the developing human heart. BMC Genomics 2023; 24:709. [PMID: 37996818 PMCID: PMC10668469 DOI: 10.1186/s12864-023-09801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND As the fetal heart develops, cardiomyocyte proliferation potential decreases while fatty acid oxidative capacity increases in a highly regulated transition known as cardiac maturation. Small noncoding RNAs, such as microRNAs (miRNAs), contribute to the establishment and control of tissue-specific transcriptional programs. However, small RNA expression dynamics and genome-wide miRNA regulatory networks controlling maturation of the human fetal heart remain poorly understood. RESULTS Transcriptome profiling of small RNAs revealed the temporal expression patterns of miRNA, piRNA, circRNA, snoRNA, snRNA and tRNA in the developing human heart between 8 and 19 weeks of gestation. Our analysis demonstrated that miRNAs were the most dynamically expressed small RNA species throughout mid-gestation. Cross-referencing differentially expressed miRNAs and mRNAs predicted 6200 mRNA targets, 2134 of which were upregulated and 4066 downregulated as gestation progressed. Moreover, we found that downregulated targets of upregulated miRNAs, including hsa-let-7b, miR-1-3p, miR-133a-3p, miR-143-3p, miR-499a-5p, and miR-30a-5p predominantly control cell cycle progression. In contrast, upregulated targets of downregulated miRNAs, including hsa-miR-1276, miR-183-5p, miR-1229-3p, miR-615-3p, miR-421, miR-200b-3p and miR-18a-3p, are linked to energy sensing and oxidative metabolism. Furthermore, integrating miRNA and mRNA profiles with proteomes and reporter metabolites revealed that proteins encoded in mRNA targets and their associated metabolites mediate fatty acid oxidation and are enriched as the heart develops. CONCLUSIONS This study presents the first comprehensive analysis of the small RNAome of the maturing human fetal heart. Our findings suggest that coordinated activation and repression of miRNA expression throughout mid-gestation is essential to establish a dynamic miRNA-mRNA-protein network that decreases cardiomyocyte proliferation potential while increasing the oxidative capacity of the maturing human fetal heart. Our results provide novel insights into the molecular control of metabolic maturation of the human fetal heart.
Collapse
Affiliation(s)
- Adar Aharon-Yariv
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Abdalla Ahmed
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul Delgado-Olguín
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada.
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Heart & Stroke, Richard Lewar Centre of Excellence, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Moatar AI, Chis AR, Romanescu M, Ciordas PD, Nitusca D, Marian C, Oancea C, Sirbu IO. Plasma miR-195-5p predicts the severity of Covid-19 in hospitalized patients. Sci Rep 2023; 13:13806. [PMID: 37612439 PMCID: PMC10447562 DOI: 10.1038/s41598-023-40754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Predicting the clinical course of Covid-19 is a challenging task, given the multi-systemic character of the disease and the paucity of minimally invasive biomarkers of disease severity. Here, we evaluated the early (first two days post-admission) level of circulating hsa-miR-195-5p (miR-195, a known responder to viral infections and SARS-CoV-2 interactor) in Covid-19 patients and assessed its potential as a biomarker of disease severity. We show that plasma miR-195 correlates with several clinical and paraclinical parameters, and is an excellent discriminator between the severe and mild forms of the disease. Our Gene Ontology analysis of miR-195 targets differentially expressed in Covid-19 indicates a strong impact on cardiac mitochondria homeostasis, suggesting a possible role in long Covid and chronic fatigue syndrome (CFS) syndromes.
Collapse
Affiliation(s)
- Alexandra Ioana Moatar
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Aimee Rodica Chis
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Mirabela Romanescu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Paula-Diana Ciordas
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Diana Nitusca
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Cristian Oancea
- Department of Infectious Diseases, Discipline of Pulmonology, University of Medicine and Pharmacy "Victor Babes", E. Murgu Square no.2, 300041, Timisoara, Romania
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy Timisoara, E. Murgu Square 2, 300041, Timisoara, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania.
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania.
- Timisoara Institute of Complex Systems, 18 Vasile Lucaciu Str, 300044, Timisoara, Romania.
| |
Collapse
|
4
|
Dantas-Komatsu RCS, Cruz MS, Freire PP, Diniz RVZ, Bortolin RH, Cabral-Marques O, Souza KBDS, Hirata MH, Hirata RDC, Reis BZ, Jurisica I, Silbiger VN, Luchessi AD. The let-7b-5p, miR-326, and miR-125a-3p are associated with left ventricular systolic dysfunction in post-myocardial infarction. Front Cardiovasc Med 2023; 10:1151855. [PMID: 37252118 PMCID: PMC10218134 DOI: 10.3389/fcvm.2023.1151855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Background Acute ST-elevation myocardial infarction (STEMI) can lead to adverse cardiac remodeling, resulting in left ventricular systolic dysfunction (LVSd) and heart failure. Epigenetic regulators, such as microRNAs, may be involved in the physiopathology of LVSd. Objective This study explored microRNAs in peripheral blood mononuclear cells (PBMC) of post-myocardial infarction patients with LVSd. Methods Post-STEMI patients were grouped as having (LVSd, n = 9) or not LVSd (non-LVSd, n = 16). The expression of 61 microRNAs was analyzed in PBMC by RT-qPCR and the differentially expressed microRNAs were identified. Principal Component Analysis stratified the microRNAs based on the development of dysfunction. Predictive variables of LVSd were investigated through logistic regression analysis. A system biology approach was used to explore the regulatory molecular network of the disease and an enrichment analysis was performed. Results The let-7b-5p (AUC: 0.807; 95% CI: 0.63-0.98; p = 0.013), miR-125a-3p (AUC: 0.800; 95% CI: 0.61-0.99; p = 0.036) and miR-326 (AUC: 0.783; 95% CI: 0.54-1.00; p = 0.028) were upregulated in LVSd (p < 0.05) and discriminated LVSd from non-LVSd. Multivariate logistic regression analysis showed let-7b-5p (OR: 16.00; 95% CI: 1.54-166.05; p = 0.020) and miR-326 (OR: 28.00; 95% CI: 2.42-323.70; p = 0.008) as predictors of LVSd. The enrichment analysis revealed association of the targets of these three microRNAs with immunological response, cell-cell adhesion, and cardiac changes. Conclusion LVSd alters the expression of let-7b-5p, miR-326, and miR-125a-3p in PBMC from post-STEMI, indicating their potential involvement in the cardiac dysfunction physiopathology and highlighting these miRNAs as possible LVSd biomarkers.
Collapse
Affiliation(s)
| | - Marina Sampaio Cruz
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA, United States
| | - Paula Paccielli Freire
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rosiane Viana Zuza Diniz
- Department of Clinical Medicine, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
- Department of Cardiology, Boston Children’s Hospital/Harvard Medical School, Boston, MA, United States
| | - Otávio Cabral-Marques
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
- Division of Molecular Medicine, Departmentof Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation, University of São Paulo School of Medicine, São Paulo, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Bruna Zavarize Reis
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Igor Jurisica
- Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Slovak Academy of Sciences, Institute of Neuroimmunology, Bratislava, Slovakia
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicology Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
- Translational Medicine, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Andre Ducati Luchessi
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Translational Medicine, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| |
Collapse
|
5
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
6
|
miR-212 Promotes Cardiomyocyte Hypertrophy through Regulating Transcription Factor 7 Like 2. Mediators Inflamm 2022; 2022:5187218. [PMID: 36060928 PMCID: PMC9433300 DOI: 10.1155/2022/5187218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
To explore the role and possible mechanism of miRNA-212 in heart failure (HF). The rat model of abdominal aortic constriction was constructed, the changes of myocardial morphology were observed by hematoxylin-eosin (HE) staining, and the hypertrophy-related marker molecules were detected by quantitative real-time polymerase chain reaction (qRT-PCR). At the cellular level, phenylephrine and angiotensin II were added to induce cardiomyocyte hypertrophy. The overexpression of miR-212 adenovirus was constructed, and the expression of miR-212 was overexpressed, and its effect on cardiac hypertrophy (CH) was detected by immunofluorescence and qRT-PCR. Then, the mechanism of miR-212 regulating CH was verified by website prediction, luciferase reporter gene assay, qRT-PCR, and western blotting assay. In the successfully constructed rat model of abdominal aortic constriction and cardiomyocyte hypertrophy, ANP and myh7 were dramatically increased, myh6 expression was decreased, and miRNA-212 expression was increased. Overexpression of miRNA-212 in cardiomyocytes can promote cardiomyocyte hypertrophy, while knocking down miR-212 in cardiomyocytes can partially reverse cell hypertrophy. In addition, miR-212 targets TCF7L2 and inhibits the expression of this gene. miRNA-212 targets TCF7L2 and inhibits the expression of this gene, possibly through this pathway to promote cardiomyocyte hypertrophy.
Collapse
|
7
|
Gómez-Ochoa SA, Bautista-Niño PK, Rojas LZ, Hunziker L, Muka T, Echeverría LE. Circulating MicroRNAs and myocardial involvement severity in chronic Chagas cardiomyopathy. Front Cell Infect Microbiol 2022; 12:922189. [PMID: 36004323 PMCID: PMC9393411 DOI: 10.3389/fcimb.2022.922189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/18/2022] Open
Abstract
Background Chronic Chagas Cardiomyopathy (CCM) is characterized by a unique pathophysiology in which inflammatory, microvascular and neuroendocrine processes coalesce in the development of one of the most severe cardiomyopathies affecting humans. Despite significant advances in understanding the molecular mechanisms involved in this disease, scarce information is available regarding microRNAs and clinical parameters of disease severity. We aimed to evaluate the association between circulating levels of six microRNAs with markers of myocardial injury and prognosis in this population. Methods Patients with CCM and reduced ejection fraction were included in a prospective exploratory cohort study. We assessed the association of natural log-transformed values of six circulating microRNAs (miR-34a-5p, miR-208a-5p, miR-185-5p, miR-223-5p, let-7d-5p, and miR-454-5p) with NT-proBNP levels and echocardiographic variables using linear regression models adjusted for potential confounders. By using Cox Proportional Hazard models, we examined whether levels of microRNAs could predict a composite outcome (CO), including all-cause mortality, cardiac transplantation, and implantation of a left ventricular assist device (LVAD). Finally, for mRNAs showing significant associations, we predicted the target genes and performed pathway analyses using Targetscan and Reactome Pathway Browser. Results Seventy-four patients were included (59% males, median age: 64 years). After adjustment for age, sex, body mass index, and heart failure medications, only increasing miR-223-5p relative expression levels were significantly associated with better myocardial function markers, including left atrium area (Coef. -10.2; 95% CI -16.35; -4.09), end-systolic (Coef. -45.3; 95% CI -74.06; -16.61) and end-diastolic volumes (Coef. -46.1; 95% CI -81.99; -10.26) of the left ventricle. Moreover, we observed that higher miR-223-5p levels were associated with better left-ventricle ejection fraction and lower NT-proBNP levels. No associations were observed between the six microRNAs and the composite outcome. A total of 123 target genes for miR-223-5p were obtained. From these, several target pathways mainly related to signaling by receptor tyrosine kinases were identified. Conclusions The present study found an association between miR-223-5p and clinical parameters of CCM, with signaling pathways related to receptor tyrosine kinases as a potential mechanism linking low levels of miR-223-5p with CCM worsening.
Collapse
Affiliation(s)
| | | | - Lyda Z. Rojas
- Research Group and Development of Nursing Knowledge (GIDCEN-FCV), Research Center, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Lukas Hunziker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- *Correspondence: Taulant Muka,
| | - Luis E. Echeverría
- Heart Failure and Heart Transplant Clinic, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| |
Collapse
|
8
|
Moscoso I, Cebro-Márquez M, Martínez-Gómez Á, Abou-Jokh C, Martínez-Monzonís MA, Martínez-Sande JL, González-Melchor L, García-Seara J, Fernández-López XA, Moraña-Fernández S, González-Juanatey JR, Rodríguez-Mañero M, Lage R. Circulating miR-499a and miR-125b as Potential Predictors of Left Ventricular Ejection Fraction Improvement after Cardiac Resynchronization Therapy. Cells 2022; 11:cells11020271. [PMID: 35053387 PMCID: PMC8773679 DOI: 10.3390/cells11020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac resynchronization therapy represents a therapeutic option for heart failure drug-refractory patients. However, due to the lack of success in 30% of the cases, there is a demand for an in-depth analysis of individual heterogeneity. In this study, we aimed to evaluate the prognostic value of circulating miRNA differences. Responder patients were defined by a composite endpoint of the presence of left ventricular reverse remodelling (a reduction ≥15% in telesystolic volume and an increment ≥10% in left ventricular ejection fraction). Circulating miRNAs signature was analysed at the time of the procedure and at a 6-month follow-up. An expression analysis showed, both at baseline and at follow-up, differences between responders and non-responders. Responders presented lower baseline expressions of miR-499, and at follow-up, downregulation of miR-125b-5p, both associated with a significant improvement in left ventricular ejection fraction. The miRNA profile differences showed a marked sensitivity to distinguish between responders and non-responders. Our data suggest that miRNA differences might contribute to prognostic stratification of patients undergoing cardiac resynchronization therapy and suggest that preimplant cardiac context as well as remodelling response are key to therapeutic success.
Collapse
Affiliation(s)
- Isabel Moscoso
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María Cebro-Márquez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Álvaro Martínez-Gómez
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Charigan Abou-Jokh
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - María Amparo Martínez-Monzonís
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Luis Martínez-Sande
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Laila González-Melchor
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Javier García-Seara
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Xesús Alberte Fernández-López
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Sandra Moraña-Fernández
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - José R. González-Juanatey
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Moisés Rodríguez-Mañero
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ricardo Lage
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
Relevance of mitochondrial dysfunction in heart disease associated with insulin resistance conditions. Pflugers Arch 2021; 474:21-31. [PMID: 34807312 DOI: 10.1007/s00424-021-02638-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022]
Abstract
Insulin resistance plays a key role in the development and progression of obesity, diabetes, and their complications. Moreover, insulin resistance is considered the principal link between metabolic diseases and cardiovascular diseases. Heart disease associated with insulin resistance is one of the most important consequences of both obesity and diabetes, and it is characterized by impaired cardiac energetics, diastolic dysfunction, and finally heart failure. Mitochondrion plays a key role in cell energy homeostasis and is the main source of reactive oxygen species. Obesity and diabetes are associated with alterations in mitochondrial function and dynamics. Mitochondrial dysfunction is characterized by changes in mitochondrial respiratory chain with reduced ATP production and elevated reactive oxygen species production. These mitochondrial alterations together with inflammation contribute to the development and progression of heart disease under insulin resistance conditions. Finally, numerous miRNAs participate in the regulation of energy substrate metabolism, reactive oxygen species production, and apoptotic pathways within the mitochondria. This notion supports the relevance of interactions between miRNAs and mitochondrial dysfunction in the pathophysiology of metabolic heart disease.
Collapse
|
10
|
Wallace L, Aikhionbare K, Banerjee S, Peagler K, Pitts M, Yao X, Aikhionbare F. Differential Expression Profiles of Mitogenome Associated MicroRNAs Among Colorectal Adenomatous Polyps. CANCER RESEARCH JOURNAL 2021; 9:23-33. [PMID: 33628862 PMCID: PMC7899164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colorectal tumors are mostly of epithelial origin and represent a wide spectrum of neoplasms. About 97% of colorectal cancer originating from benign lesions of adenomatous polyps are adenocarcinomas. Reactive oxygen species (ROS) generating from mitochondrial DNA (mtDNA) mutations and microRNAs (miRNAs) are associated with oncogene and tumor suppressor genes regulation which are known to parallel the tissue abnormalities involved with tumorigenesis such as colorectal adenoma to adenocarcinoma. However, the differential expression patterns of mitochondrial associated microRNAs (referred as MitomiRs) among colorectal adenomatous polyps progression is yet to be determined. Thus, the aim of this study was to determine the differential expressions profiles of MitomiRs (miR-24, miR-181, miR-210, miR-21 and miR378) in patients with colorectal adenomatous polyps tissues in correlation with clinicopathological tumor architectures of tubular, tubulovillous, villous adenomas and adenocarcinomas. Isolation of mitochondria RNA from colorectal adenomatous polyps, adenocarcinomas, and normal adjacent tissue samples was performed and assessed for mitochondrial associated miRNAs expression differences using quantitative reverse transcription PCR. Data from this study demonstrates that mitochondria genome expression of mitomiRNAs; miR-24, miR-181, miR-210, miR-21 and miR-378 in colorectal tissue samples varies among the adenomatous polyps. Expression of mitomiRNAs 24, 181, 210 and 378 progressively increased from the precancerous of adenomatous polyps to adenocarcinoma. In addition, miR-210 and miR-181 expression increased 3 folds in villous adenomas and greater than 3 folds increased in miR378 in adenocarcinoma (p < 0.005) when compared to tubular adenoma. Meanwhile, miR-21 increased progressively in adenoma tissues but decreased almost 2.5 folds in adenocarcinomas when compared to villous adenoma tissues (p < 0.001). These results suggest mitomiRs may regulate important mitochondrial functional pathways leading to a more favorable environment for transformation or progression of colorectal adenomatous polyps into adenocarcinomas.
Collapse
Affiliation(s)
- LaShanale Wallace
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Karen Aikhionbare
- College of Science and Mathematics, Augusta University,
Augusta, Georgia, USA
| | - Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Katie Peagler
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Mareena Pitts
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine,
Atlanta, Georgia, USA
| | - Felix Aikhionbare
- Department of Medicine, Morehouse School of Medicine,
Atlanta, Georgia, USA
| |
Collapse
|
11
|
Abstract
Small RNAs (sRNAs), including microRNAs (miRNAs), are noncoding RNA (ncRNA) molecules involved in gene regulation. sRNAs play important roles in development; however, their significance in nutritional control and as metabolic modulators is still emerging. The mechanisms by which diet impacts metabolic genes through miRNAs remain an important area of inquiry. Recent work has established how miRNAs are transported in body fluids often within exosomes, which are small cell-derived vesicles that function in intercellular communication. The abundance of other recently identified ncRNAs and new insights regarding ncRNAs as dietary bioactive compounds could remodel our understanding about how foods impact gene expression. Although controversial, some groups have shown that dietary RNAs from plants and animals (i.e., milk) are functional in consumers. In the future, regulating sRNAs either directly through dietary delivery or indirectly by altered expression of endogenous sRNA may be part of nutritional interventions for regulating metabolism.
Collapse
Affiliation(s)
- Elizabeth M McNeill
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Kendal D Hirschi
- Departments of Pediatrics and Human and Molecular Genetics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
12
|
Abstract
Heart failure (HF) remains a major cause of death and disability worldwide. Currently, B-type natriuretic peptide and N-terminal pro-brain natriuretic peptide are diagnostic biomarkers used in HF. Although very sensitive, they are not specific enough and do not allow the prediction or early diagnosis of HF. Many ongoing studies focus on determining the underlying cause and understanding the mechanisms of HF on the cellular level. MicroRNAs (miRNAs) are non-coding RNAs which control the majority of cellular processes and therefore are considered to have a potential clinical application in HF. In this review, we aim to provide synthesized information about miRNAs associated with ejection fraction, HF etiology, diagnosis, and prognosis, as well as outline therapeutic application of miRNAs in HF. Further, we discuss methodological challenges associated with the analysis of miRNAs and provide recommendations for defining a study population, collecting blood samples, and selecting detection methods to study miRNAs in a reliable and reproducible way. This review is intended to be an accessible tool for clinicians interested in the field of miRNAs and HF.
Collapse
|
13
|
Kim M, Zhang X. The Profiling and Role of miRNAs in Diabetes Mellitus. JOURNAL OF DIABETES AND CLINICAL RESEARCH 2019; 1:5-23. [PMID: 32432227 PMCID: PMC7236805 DOI: 10.33696/diabetes.1.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM), a complex metabolic disease, has become a global threat to human health worldwide. Over the past decades, an enormous amount of effort has been devoted to understand how microRNAs (miRNAs), a class of small non-coding RNA regulators of gene expression at the post-transcriptional level, are implicated in DM pathology. Growing evidence suggests that the expression signature of a specific set of miRNAs has been altered in the progression of DM. In the present review, we summarize the recent investigations on the miRNA profiles as novel DM biomarkers in clinical studies and in animal models, and highlight recent discoveries on the complex regulatory effect and functional role of miRNAs in DM.
Collapse
Affiliation(s)
- Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Abstract
Myocardial infarction (MI), characterized by ischemia-induced cardiomyocyte apoptosis, is the leading cause of mortality worldwide. NR4A2, a member of the NR4A orphan nucleus receptor family, is upregulated in mouse hearts with MI injury. Furthermore, NR4A2 knockdown aggravates heart injury as evidenced by enlarged hearts and increased apoptosis. To elucidate the underlying mechanisms of NR4A2-regulated apoptosis, we used H9c2 cardiomyocytes deprived of serum and neonatal rat cardiomyocytes (NRCMs) exposed to hypoxia to mimic ischemic conditions in vivo. As NR4A2 knockdown aggravates cardiomyocyte apoptosis, while NR4A2 overexpression ameliorates it, NR4A2 upregulation was considered an adaptive response to ischemia-induced cardiomyocyte apoptosis. By detecting changes in LC3 and using autophagy detection tools including Bafilomycin A1, 3MA and rapamycin, we found that NR4A2 knockdown promoted apoptosis through blocking autophagic flux. This apoptotic response was phenocopied by downregulation of NR4A2 after autophagic flux was impaired by Bafilomycin A1. Further study showed that NR4A2 binds to p53 directly and decreases its levels when it inhibits apoptosis; thus, p53/Bax is the downstream effector of NR4A2-mediated apoptosis, as previously reported. Changes in p53/Bax that were regulated by NR4A2 were also detected in injured hearts with NR4A2 knockdown. In addition, miR-212-3p is the upstream regulator of NR4A2, and it could downregulate the expression of NR4A2, as well as p53/Bax. The mechanism underlying the role of NR4A2 in apoptosis and autophagy was elucidated, and NR4A2 may be a therapeutic drug target for heart failure.
Collapse
|
15
|
Cui Y, Song J, Li S, Lee C, Zhang F, Chen H. Plasmatic MicroRNA Signatures in Elderly People with Stable and Unstable Angina. Int Heart J 2018; 59:43-50. [PMID: 29332918 DOI: 10.1536/ihj.17-063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We aimed to investigate the distinctive miRNA profiles in the plasma of elderly patients with unstable angina (UA) and stable angina (SA), and to find more effective markers of UA in elderly people. We compared miRNA expression levels in plasma samples from 10 elderly patients with UA and 10 elderly patients with SA by using microarray-based miRNA chip, and then performed validation with Real-time PCR. Mir-1202, mir-1207-5p, and mir-1225-5p showed a statistically significant down-regulation (P < 0.05), while mir-3162-3p showed an up-regulation (P < 0.05) during validation. Among all single miRNAs, miR-3162-3p showed the highest discriminatory power in the diagnosis of elderly patients with UA (AUC: 0.79, 95% CI: 0.675-0.905). The discriminatory power of a panel of three miRNAs (mir-3162-3p/mir-1225-5p/mir-1207-5p) was highest with an AUC of 0.91 (95% CI: 0.84-0.98), followed by mir-3162-3p/mir-1225-5p (AUC: 0.833, 95% CI: 0.732-0.934) and mir-3162-3p/mir-1207-5p (AUC: 0.817, 95% CI: 0.712-0.922). In conclusion, multi-miRNA panel could provide higher diagnostic value for the diagnosis of elderly patients with UA.
Collapse
Affiliation(s)
- Yuxia Cui
- Department of Cardiology, Peking University People's Hospital.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital.,Center for Cardiovascular Translational Research, Peking University People's Hospital
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital.,Center for Cardiovascular Translational Research, Peking University People's Hospital
| | - Sufang Li
- Department of Cardiology, Peking University People's Hospital.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital.,Center for Cardiovascular Translational Research, Peking University People's Hospital
| | - Chongyou Lee
- Department of Cardiology, Peking University People's Hospital.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital.,Center for Cardiovascular Translational Research, Peking University People's Hospital
| | - Feng Zhang
- Department of Cardiology, Peking University People's Hospital.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital.,Center for Cardiovascular Translational Research, Peking University People's Hospital
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's Hospital.,Center for Cardiovascular Translational Research, Peking University People's Hospital
| |
Collapse
|
16
|
Klum SM, Chandradoss SD, Schirle NT, Joo C, MacRae IJ. Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. EMBO J 2018; 37:75-88. [PMID: 28939659 PMCID: PMC5753032 DOI: 10.15252/embj.201796474] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 01/29/2023] Open
Abstract
Argonaute proteins use microRNAs (miRNAs) to identify mRNAs targeted for post-transcriptional repression. Biochemical assays have demonstrated that Argonaute functions by modulating the binding properties of its miRNA guide so that pairing to the seed region is exquisitely fast and accurate. However, the mechanisms used by Argonaute to reshape the binding properties of its small RNA guide remain poorly understood. Here, we identify a structural element, α-helix-7, in human Argonaute2 (Ago2) that is required for speed and fidelity in binding target RNAs. Biochemical, structural, and single-molecule data indicate that helix-7 acts as a molecular wedge that pivots to enforce rapid making and breaking of miRNA:target base pairs in the 3' half of the seed region. These activities allow Ago2 to rapidly dismiss off-targets and dynamically search for seed-matched sites at a rate approaching the limit of diffusion.
Collapse
Affiliation(s)
- Shannon M Klum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stanley D Chandradoss
- Department of BioNanoScience, Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands
| | - Nicole T Schirle
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
17
|
Hathaway QA, Pinti MV, Durr AJ, Waris S, Shepherd DL, Hollander JM. Regulating microRNA expression: at the heart of diabetes mellitus and the mitochondrion. Am J Physiol Heart Circ Physiol 2017; 314:H293-H310. [PMID: 28986361 DOI: 10.1152/ajpheart.00520.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus is a major risk factor for cardiovascular disease and mortality. Uncontrolled type 2 diabetes mellitus results in a systemic milieu of increased circulating glucose and fatty acids. The development of insulin resistance in cardiac tissue decreases cellular glucose import and enhances mitochondrial fatty acid uptake. While triacylglycerol and cytotoxic lipid species begin to accumulate in the cardiomyocyte, the energy substrate utilization ratio of free fatty acids to glucose changes to almost entirely free fatty acids. Accumulating evidence suggests a role of miRNA in mediating this metabolic transition. Energy substrate metabolism, apoptosis, and the production and response to excess reactive oxygen species are regulated by miRNA expression. The current momentum for understanding the dynamics of miRNA expression is limited by a lack of understanding of how miRNA expression is controlled. While miRNAs are important regulators in both normal and pathological states, an additional layer of complexity is added when regulation of miRNA regulators is considered. miRNA expression is known to be regulated through a number of mechanisms, which include, but are not limited to, epigenetics, exosomal transport, processing, and posttranscriptional sequestration. The purpose of this review is to outline how mitochondrial processes are regulated by miRNAs in the diabetic heart. Furthermore, we will highlight the regulatory mechanisms, such as epigenetics, exosomal transport, miRNA processing, and posttranslational sequestration, that participate as regulators of miRNA expression. Additionally, current and future treatment strategies targeting dysfunctional mitochondrial processes in the diseased myocardium, as well as emerging miRNA-based therapies, will be summarized.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Mark V Pinti
- Division of Pharmaceutical and Pharmacological Sciences, West Virginia School of Pharmacy , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Shanawar Waris
- Department of Biomedical Engineering, West Virginia College of Engineering , Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
18
|
The role of post-translational protein modifications on heart and vascular metabolism. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2197-2198. [DOI: 10.1016/j.bbadis.2016.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|