1
|
Karagianni C, Bazopoulou D. Redox regulation in lifespan determination. J Biol Chem 2024; 300:105761. [PMID: 38367668 PMCID: PMC10965828 DOI: 10.1016/j.jbc.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
One of the major challenges that remain in the fields of aging and lifespan determination concerns the precise roles that reactive oxygen species (ROS) play in these processes. ROS, including superoxide and hydrogen peroxide, are constantly generated as byproducts of aerobic metabolism, as well as in response to endogenous and exogenous cues. While ROS accumulation and oxidative damage were long considered to constitute some of the main causes of age-associated decline, more recent studies reveal a signaling role in the aging process. In fact, accumulation of ROS, in a spatiotemporal manner, can trigger beneficial cellular responses that promote longevity and healthy aging. In this review, we discuss the importance of timing and compartmentalization of external and internal ROS perturbations in organismal lifespan and the role of redox regulated pathways.
Collapse
|
2
|
Odnokoz O, Earland N, Badinloo M, Klichko VI, Benes J, Orr WC, Radyuk SN. Peroxiredoxins Play an Important Role in the Regulation of Immunity and Aging in Drosophila. Antioxidants (Basel) 2023; 12:1616. [PMID: 37627611 PMCID: PMC10451867 DOI: 10.3390/antiox12081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Aberrant immune responses and chronic inflammation can impose significant health risks and promote premature aging. Pro-inflammatory responses are largely mediated via reactive oxygen species (ROS) and reduction-oxidation reactions. A pivotal role in maintaining cellular redox homeostasis and the proper control of redox-sensitive signaling belongs to a family of antioxidant and redox-regulating thiol-related peroxidases designated as peroxiredoxins (Prx). Our recent studies in Drosophila have shown that Prxs play a critical role in aging and immunity. We identified two important 'hubs', the endoplasmic reticulum (ER) and mitochondria, where extracellular and intracellular stress signals are transformed into pro-inflammatory responses that are modulated by the activity of the Prxs residing in these cellular organelles. Here, we found that mitochondrial Prx activity in the intestinal epithelium is required to prevent the development of intestinal barrier dysfunction, which can drive systemic inflammation and premature aging. Using a redox-negative mutant, we demonstrated that Prx acts in a redox-dependent manner in regulating the age-related immune response. The hyperactive immune response observed in flies under-expressing mitochondrial Prxs is due to a response to abiotic signals but not to changes in the bacterial content. This hyperactive response, but not reduced lifespan phenotype, can be rescued by the ER-localized Prx.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Svetlana N. Radyuk
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA; (O.O.); (N.E.); (M.B.); (V.I.K.); (J.B.); (W.C.O.)
| |
Collapse
|
3
|
Cuanalo-Contreras K, Schulz J, Mukherjee A, Park KW, Armijo E, Soto C. Extensive accumulation of misfolded protein aggregates during natural aging and senescence. Front Aging Neurosci 2023; 14:1090109. [PMID: 36778589 PMCID: PMC9909609 DOI: 10.3389/fnagi.2022.1090109] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Accumulation of misfolded protein aggregates is a hallmark event in many age-related protein misfolding disorders, including some of the most prevalent and insidious neurodegenerative diseases. Misfolded protein aggregates produce progressive cell damage, organ dysfunction, and clinical changes, which are common also in natural aging. Thus, we hypothesized that aging is associated to the widespread and progressive misfolding and aggregation of many proteins in various tissues. In this study, we analyzed whether proteins misfold, aggregate, and accumulate during normal aging in three different biological systems, namely senescent cells, Caenorhabditis elegans, and mouse tissues collected at different times from youth to old age. Our results show a significant accumulation of misfolded protein aggregates in aged samples as compared to young materials. Indeed, aged samples have between 1.3 and 2.5-fold (depending on the biological system) higher amount of insoluble proteins than young samples. These insoluble proteins exhibit the typical characteristics of disease-associated aggregates, including insolubility in detergents, protease resistance, and staining with amyloid-binding dye as well as accumulation in aggresomes. We identified the main proteins accumulating in the aging brain using proteomic studies. These results show that the aged brain contain large amounts of misfolded and likely non-functional species of many proteins, whose soluble versions participate in cellular pathways that play fundamental roles in preserving basic functions, such as protein quality control, synapsis, and metabolism. Our findings reveal a putative role for protein misfolding and aggregation in aging.
Collapse
Affiliation(s)
- Karina Cuanalo-Contreras
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jonathan Schulz
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abhisek Mukherjee
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kyung-Won Park
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Enrique Armijo
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States,Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States,Facultad de Medicina, Universidad de los Andes, Santiago, Chile,*Correspondence: Claudio Soto,
| |
Collapse
|
4
|
Odnokoz O, Nakatsuka K, Wright C, Castellanos J, Klichko VI, Kretzschmar D, Orr WC, Radyuk SN. Mitochondrial Redox Signaling Is Critical to the Normal Functioning of the Neuronal System. Front Cell Dev Biol 2021; 9:613036. [PMID: 33585478 PMCID: PMC7876342 DOI: 10.3389/fcell.2021.613036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction often leads to neurodegeneration and is considered one of the main causes of neurological disorders, such as Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and other age-related diseases. Mitochondrial dysfunction is tightly linked to oxidative stress and accumulating evidence suggests the association between oxidative stress and neurological disorders. However, there is insufficient knowledge about the role of pro-oxidative shift in cellular redox and impairment of redox-sensitive signaling in the development of neurodegenerative pathological conditions. To gain a more complete understanding of the relationship between mitochondria, redox status, and neurodegenerative disorders, we investigated the effect of mitochondrial thiol-dependent peroxidases, peroxiredoxins (Prxs), on the physiological characteristics of flies, which change with pathologies such as PD, ALS and during aging. We previously found that through their ability to sense changes in redox and regulate redox-sensitive signaling, Prxs play a critical role in maintaining global thiol homeostasis, preventing age-related apoptosis and chronic activation of the immune response. We also found that the phenotype of flies under-expressing Prxs in mitochondria shares many characteristics with the phenotype of Drosophila models of neurological disorders such as ALS, including impaired locomotor activity and compromised redox balance. Here, we expanded the study and found that under-expression of mitochondrial Prxs leads to behavioral changes associated with neural function, including locomotor ability, sleep-wake behavior, and temperature-sensitive paralysis. We also found that under-expression of mitochondrial Prxs with a motor-neuron-specific driver, D42-GAL4, was a determining factor in the development of the phenotype of shortened lifespan and impaired motor activity in flies. The results of the study suggest a causal link between mitochondrial Prx activity and the development of neurological disorders and pre-mature aging.
Collapse
Affiliation(s)
- Olena Odnokoz
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Kyle Nakatsuka
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Corbin Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Jovelyn Castellanos
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Vladimir I Klichko
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
5
|
Development of fly tolerance to consuming a high-protein diet requires physiological, metabolic and transcriptional changes. Biogerontology 2020; 21:619-636. [PMID: 32468146 DOI: 10.1007/s10522-020-09880-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
Mortality in insects consuming high-protein-and-low-carbohydrate diets resembles a type III lifespan curve with increased mortality at an early age and few survivors that live a relatively long lifespan. We selected for a Drosophila line able to live for a long time on an imbalanced high-protein-low-carbohydrate diet by carrying out five rounds of breeding to select for the most long-lived survivors. Adaptation to this diet in the selected line was studied at the biochemical, physiological and transcriptomic levels. The selected line of flies consumed less of the imbalanced food but also accumulated more storage metabolites: glycogen, triacylglycerides, and trehalose. Selected flies also had a higher activity of alanine transaminase and a higher urea content. Adaptation of the selected line on the transcriptomic level was characterized by down-regulation of genes encoding serine endopeptidases (Jon25i, Jon25ii, betaTry, and others) but up-regulation of genes encoding proteins related to the immune system, such as antimicrobial peptides, Turandot-family humoral factors, hexamerin isoforms, and vitellogenin. These sets of down- and up-regulated genes were similar to those observed in fruit flies with suppressed juvenile hormone signaling. Our data show that the physiological adaptation of fruit flies to a high-protein-low-carbohydrate diet occurs via intuitive pathways, namely a decrease in food consumption, conversion of amino acids into ketoacids to compensate for the lack of carbohydrate, and accumulation of storage metabolites to eliminate the negative effects of excess amino acids. Nevertheless, transcriptomic adaptation occurs in a counter-intuitive way likely via an influence of gut microbiota on food digestion.
Collapse
|
6
|
Lennicke C, Cochemé HM. Redox signalling and ageing: insights from Drosophila. Biochem Soc Trans 2020; 48:367-377. [PMID: 32196546 PMCID: PMC7200633 DOI: 10.1042/bst20190052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Ageing and age-related diseases are major challenges for the social, economic and healthcare systems of our society. Amongst many theories, reactive oxygen species (ROS) have been implicated as a driver of the ageing process. As by-products of aerobic metabolism, ROS are able to randomly oxidise macromolecules, causing intracellular damage that accumulates over time and ultimately leads to dysfunction and cell death. However, the genetic overexpression of enzymes involved in the detoxification of ROS or treatment with antioxidants did not generally extend lifespan, prompting a re-evaluation of the causal role for ROS in ageing. More recently, ROS have emerged as key players in normal cellular signalling by oxidising redox-sensitive cysteine residues within proteins. Therefore, while high levels of ROS may be harmful and induce oxidative stress, low levels of ROS may actually be beneficial as mediators of redox signalling. In this context, enhancing ROS production in model organisms can extend lifespan, with biological effects dependent on the site, levels, and specific species of ROS. In this review, we examine the role of ROS in ageing, with a particular focus on the importance of the fruit fly Drosophila as a powerful model system to study redox processes in vivo.
Collapse
Affiliation(s)
- Claudia Lennicke
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, U.K
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
| | - Helena M. Cochemé
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, U.K
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
| |
Collapse
|
7
|
Belmonte RL, Corbally MK, Duneau DF, Regan JC. Sexual Dimorphisms in Innate Immunity and Responses to Infection in Drosophila melanogaster. Front Immunol 2020; 10:3075. [PMID: 32076419 PMCID: PMC7006818 DOI: 10.3389/fimmu.2019.03075] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
The sexes show profound differences in responses to infection and the development of autoimmunity. Dimorphisms in immune responses are ubiquitous across taxa, from arthropods to vertebrates. Drosophila melanogaster shows strong sex dimorphisms in immune system responses at baseline, upon pathogenic challenge, and over aging. We have performed an exhaustive survey of peer-reviewed literature on Drosophila immunity, and present a database of publications indicating the sex(es) analyzed in each study. While we found a growing interest in the community in adult immunity and in reporting both sexes, the main body of work in this field uses only one sex, or does not stratify by sex. We synthesize evidence for sexually dimorphic responses to bacterial, viral, and fungal infections. Dimorphisms may be mediated by distinct immune compartments, and we review work on sex differences in behavioral, epithelial, cellular, and systemic (fat body-mediated) immunity. Emerging work on sexually dimorphic aging of immune tissues, immune senescence, and inflammation are examined. We consider evolutionary drivers for sex differences in immune investment, highlight the features of Drosophila biology that make it particularly amenable to studies of immune dimorphisms, and discuss areas for future exploration.
Collapse
Affiliation(s)
- Rebecca L. Belmonte
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mary-Kate Corbally
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David F. Duneau
- Laboratoire Evolution & Diversite Biologique, UMR5174 EDB, CNRS, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jennifer C. Regan
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
BK Ca ( Slo) Channel Regulates Mitochondrial Function and Lifespan in Drosophila melanogaster. Cells 2019; 8:cells8090945. [PMID: 31438578 PMCID: PMC6770356 DOI: 10.3390/cells8090945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
BKCa channels, originally discovered in Drosophila melanogaster as slowpoke (slo), are recognized for their roles in cellular and organ physiology. Pharmacological approaches implicated BKCa channels in cellular and organ protection possibly for their ability to modulate mitochondrial function. However, the direct role of BKCa channels in regulating mitochondrial structure and function is not deciphered. Here, we demonstrate that BKCa channels are present in fly mitochondria, and slo mutants show structural and functional defects in mitochondria. slo mutants display an increase in reactive oxygen species and the modulation of ROS affected their survival. We also found that the absence of BKCa channels reduced the lifespan of Drosophila, and overexpression of human BKCa channels in flies extends life span in males. Our study establishes the presence of BKCa channels in mitochondria of Drosophila and ascertains its novel physiological role in regulating mitochondrial structural and functional integrity, and lifespan.
Collapse
|
9
|
Klichko VI, Safonov VL, Safonov MY, Radyuk SN. Supplementation with hydrogen-producing composition confers beneficial effects on physiology and life span in Drosophila. Heliyon 2019; 5:e01679. [PMID: 31193183 PMCID: PMC6522691 DOI: 10.1016/j.heliyon.2019.e01679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, molecular hydrogen (H2) has become known as a new class of antioxidants and redox-modulating interventions. Effects of H2 have been documented for many acute and chronic pathological conditions. The present study was aimed at determining the effect of hydrogen on the physiology and longevity of Drosophila. The flies were given a patented food supplement consisting of a mixture of inert salts with metallic magnesium, which reacted with acidic aqueous solutions, thereby releasing hydrogen gas. The supplementation with hydrogen-rich food prolonged the life span of the wild-type strain. To gain insights into the effect of hydrogen, we used previously generated mutant under-expressing redox-regulating enzymes, peroxiredoxins, in mitochondria. The hydrogen-releasing material lessened the severe shortening of life span of the mutant. Hydrogen also delayed the development of intestinal dysfunction caused by under-expression of peroxiredoxins in the intestinal epithelium. Hydrogen also averted a significant decrease in the mobility of mutant flies that under-expressed peroxiredoxins globally or in specific tissues. Together, the results showed that the introduction of hydrogen to aging or short-lived flies could increase their survival, delay the development of the intestinal barrier dysfunction and significantly improve physical activity.
Collapse
|
10
|
Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019; 11:nu11030504. [PMID: 30818813 PMCID: PMC6471790 DOI: 10.3390/nu11030504] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) protects against redox stress by providing reducing equivalents to antioxidants such as glutathione and thioredoxin. NADPH levels decline with aging in several tissues, but whether this is a major driving force for the aging process has not been well established. Global or neural overexpression of several cytoplasmic enzymes that synthesize NADPH have been shown to extend lifespan in model organisms such as Drosophila suggesting a positive relationship between cytoplasmic NADPH levels and longevity. Mitochondrial NADPH plays an important role in the protection against redox stress and cell death and mitochondrial NADPH-utilizing thioredoxin reductase 2 levels correlate with species longevity in cells from rodents and primates. Mitochondrial NADPH shuttles allow for some NADPH flux between the cytoplasm and mitochondria. Since a decline of nicotinamide adenine dinucleotide (NAD+) is linked with aging and because NADP+ is exclusively synthesized from NAD+ by cytoplasmic and mitochondrial NAD+ kinases, a decline in the cytoplasmic or mitochondrial NADPH pool may also contribute to the aging process. Therefore pro-longevity therapies should aim to maintain the levels of both NAD+ and NADPH in aging tissues.
Collapse
|
11
|
Towarnicki SG, Ballard JWO. Mitotype Interacts With Diet to Influence Longevity, Fitness, and Mitochondrial Functions in Adult Female Drosophila. Front Genet 2018; 9:593. [PMID: 30555517 PMCID: PMC6284043 DOI: 10.3389/fgene.2018.00593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA (mtDNA) and the dietary macronutrient ratio are known to influence a wide range of phenotypic traits including longevity, fitness and energy production. Commonly mtDNA mutations are posited to be selectively neutral or reduce fitness and, to date, no selectively advantageous mtDNA mutations have been experimentally demonstrated in adult female Drosophila. Here we propose that a ND V161L mutation interacted with diets differing in their macronutrient ratios to influence organismal physiology and mitochondrial traits, but further studies are required to definitively show no linked mtDNA mutations are functionally significant. We utilized two mtDNA types (mitotypes) fed either a 1:2 Protein: Carbohydrate (P:C) or 1:16 P:C diet. When fed the former diet, Dahomey females harboring the V161L mitotype lived longer than those with the Alstonville mitotype and had higher climbing, basal reactive oxygen species (ROS) and elevated glutathione S-transferase E1 expression. The short lived Alstonville females ate more, had higher walking speed and elevated mitochondrial functions as suggested by respiratory control ratio (RCR), mtDNA copy number and expression of mitochondrial transcription termination factor 3. In contrast, Dahomey females fed 1:16 P:C were shorter lived, had higher fecundity, walking speed and mitochondrial functions. They had reduced climbing. This result suggests that mtDNA cannot be assumed to be a strictly neutral evolutionary marker when the dietary macronutrient ratio of a species varies over time and space and supports the hypothesis that mtDNA diversity may reflect the amount of time since the last selective sweep rather than strictly demographic processes.
Collapse
Affiliation(s)
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Abstract
SIGNIFICANCE Peroxiredoxins (Prxs), a family of thiol-associated peroxidases, are purported to play a major role in sensing and managing hydrogen peroxide concentrations and transducing peroxide-derived signals. Recent Advances: Prxs can act as detoxifying factors and impart effects to cells that can be either sparing or suicidal. Advances have been made to address the qualitative changes in Prx function in response to quantitative changes in the signal level and to understand how Prx activity could be affected by their own substrates. Here we rationalize the basis for both positive and negative effects on signaling pathways and cell physiology, summarizing data from model organisms, including invertebrates. CRITICAL ISSUES Resolving the relationship between the promiscuous behavior of reactive oxygen species and the specificity of Prxs toward different targets in redox-sensitive signaling pathways is a key area of research. Attempts to understand Prx function and underlying mechanisms were conducted in vitro or in vivo under nonphysiological conditions, leaving the physiological relevance yet to be defined. Other issues: Why despite the high degree of homology and similarities in subcellular and tissue distribution between Prxs do they display differential effects on signaling? How is the specificity of post-translational protein modifications determined? Other than chaperone-like activity, how do hyperoxidized Prxs function? FUTURE DIRECTIONS Genetic models with mutated catalytic and resolving cysteines should be further exploited to dissect the functional significance of individual Prxs in their different states together with their alternative reducing partners. Such an analysis may then be extended to help identify Prx-specific targets.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University , Dallas, Texas
| |
Collapse
|
13
|
Badinloo M, Nguyen E, Suh W, Alzahrani F, Castellanos J, Klichko VI, Orr WC, Radyuk SN. Overexpression of antimicrobial peptides contributes to aging through cytotoxic effects in Drosophila tissues. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21464. [PMID: 29637607 PMCID: PMC6039247 DOI: 10.1002/arch.21464] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The innate immune response tends to become hyperactive and proinflammatory in older organisms. We investigated connections between activity of the immune-related genes and aging using the Drosophila model. A hallmark of Drosophila immunity is the production of antimicrobial peptides (AMP), whose expression is triggered via activation of the Toll and Imd immune pathways and regulated by NF-ĸB-like transcription factors, Dif/Dorsal and Relish. It was previously shown that overexpression of the upstream component of the immune pathways shortens lifespan via activation of the Relish-dependent immune response. Here we show that direct overexpression of the Relish target AMP genes broadly at high levels or in the fat body induced apoptosis, elicited depolarization of the mitochondria and significantly shortened lifespan. Underexpression of Relish in the fat body beginning in the second half of lifespan prevented overactivation of AMPs and extended longevity. Unlike infection-induced responses, the age-related increase in AMPs does not require the upstream recognition/transduction module of the Imd pathway. It does however require downstream elements, including Relish and Ird5, a component of the downstream IKK complex. Together, these results established causal links between high-level production of antimicrobial peptides and longevity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Svetlana N. Radyuk
- Corresponding Author Svetlana N. Radyuk, PhD, 6501 Airline Rd, Room 113, Dallas, TX 75275, Tel: +1-214-768-2892, Fax: +1-214-768-3955,
| |
Collapse
|
14
|
Detienne G, De Haes W, Mergan L, Edwards SL, Temmerman L, Van Bael S. Beyond ROS clearance: Peroxiredoxins in stress signaling and aging. Ageing Res Rev 2018; 44:33-48. [PMID: 29580920 DOI: 10.1016/j.arr.2018.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Antioxidants were long predicted to have lifespan-promoting effects, but in general this prediction has not been well supported. While some antioxidants do seem to have a clear effect on longevity, this may not be primarily as a result of their role in the removal of reactive oxygen species, but rather mediated by other mechanisms such as the modulation of intracellular signaling. In this review we discuss peroxiredoxins, a class of proteinaceous antioxidants with redox signaling and chaperone functions, and their involvement in regulating longevity and stress resistance. Peroxiredoxins have a clear role in the regulation of lifespan and survival of many model organisms, including the mouse, Caenorhabditis elegans and Drosophila melanogaster. Recent research on peroxiredoxins - in these models and beyond - has revealed surprising new insights regarding the interplay between peroxiredoxins and longevity signaling, which will be discussed here in detail. As redox signaling is emerging as a potentially important player in the regulation of longevity and aging, increased knowledge of these fascinating antioxidants and their mode(s) of action is paramount.
Collapse
Affiliation(s)
- Giel Detienne
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Wouter De Haes
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lucas Mergan
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Samantha L Edwards
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liesbet Temmerman
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Sven Van Bael
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Abstract
Here, we provide a brief review of the mechanistic connections between immunity and aging—a fundamental biological relationship that remains poorly understood—by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections (“immuno-senescence”). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging (“inflammaging”). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from
Drosophila, a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.
Collapse
Affiliation(s)
- Kathrin Garschall
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|