1
|
Wu C, Yu X, Li X, An R, Li S, Liu X, Hu X, Li S, Zhou Q, Li L, Yu H, Zhao M, Chang A. Aberrant METTL14 gene expression contributes to malignant transformation of benzene-exposed myeloid cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116302. [PMID: 38608381 DOI: 10.1016/j.ecoenv.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Benzene is a known contributor to human leukaemia through its toxic effects on bone marrow cells, and epigenetic modification is believed to be a potential mechanism underlying benzene pathogenesis. However, the specific roles of N6-methyladenosine (m6A), a newly discovered RNA post-transcriptional modification, in benzene-induced hematotoxicity remain unclear. In this study, we identified self-renewing malignant proliferating cells in the bone marrow of benzene-exposed mice through in vivo bone marrow transplantation experiments and Competitive Repopulation Assay. Subsequent analysis using whole transcriptome sequencing and RNA m6A methylation sequencing revealed a significant upregulation of RNA m6A modification levels in the benzene-exposed group. Moreover, RNA methyltransferase METTL14, known as a pivotal player in m6A modification, was found to be aberrantly overexpressed in Lin-Sca-1+c-Kit+ (LSK) cells of benzene-exposed mice. Further analysis based on the GEO database showed a positive correlation between the expression of METTL14, mTOR, and GFI and benzene exposure dose. In vitro cellular experiments, employing experiments such as western blot, q-PCR, m6A RIP, and CLIP, validated the regulatory role of METTL14 on mTOR and GFI1. Mechanistically, continuous damage inflicted by benzene exposure on bone marrow cells led to the overexpression of METTL14 in LSK cells, which, in turn, increased m6A modification on the target genes' (mTOR and GFI1) RNA. This upregulation of target gene expression activated signalling pathways such as mTOR-AKT, ultimately resulting in malignant proliferation of bone marrow cells. In conclusion, this study offers insights into potential early targets for benzene-induced haematologic malignant diseases and provides novel perspectives for more targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xin Yu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaoling Li
- Department of Minimally Invasive Interventional, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Regio 010000, China
| | - Ran An
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, and Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shengnan Li
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xinyue Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangting Hu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shufei Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Qinghong Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Limei Li
- Department of Blood Cell Therapy, The Second Affiliated Hospital of Hainan Medical University, China
| | - Hai Yu
- Department of Minimally Invasive Interventional, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Regio 010000, China.
| | - Miao Zhao
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
2
|
Kumari S, Rehman A, Chandra P, Singh KK. Functional role of SAP18 protein: From transcriptional repression to splicing regulation. Cell Biochem Funct 2023; 41:738-751. [PMID: 37486712 DOI: 10.1002/cbf.3830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Sin3 associated protein 18 (SAP18) is an evolutionary conserved protein, originally discovered in a complex with the transcriptional regulatory protein, Sin3. Subsequent investigations revealed SAP18 as an integral splicing component of the exon junction complex (EJC)-associated apoptosis-and splicing-associated protein (ASAP)/PNN-RNPS1-SAP18 (PSAP) complex. In association with Sin3, SAP18 contributes toward transcriptional repression of genes implicated in embryonic development, stress response, human immunodeficiency virus type 1 replication, and tumorigenesis. As a part of EJC, SAP18 mediates alternative splicing events and suppresses the cryptic splice sites present within flanking regions of exon-exon junctions. In this review, we provide a thorough discussion on SAP18, focussing on its conserved dual role in transcriptional regulation and messenger RNA splicing. Recent research on the involvement of SAP18 in the emergence of cancer and human disorders has also been highlighted. The potential of SAP18 as a therapeutic target is also discussed in these recent studies, particularly related to malignancies of the myeloid lineage.
Collapse
Affiliation(s)
- Sweta Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ayushi Rehman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Pratap Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kusum K Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
3
|
Poulard C, Ha Pham T, Drouet Y, Jacquemetton J, Surmielova A, Kassem L, Mery B, Lasset C, Reboulet J, Treilleux I, Marangoni E, Trédan O, Le Romancer M. Nuclear PRMT5 is a biomarker of sensitivity to tamoxifen in ERα + breast cancer. EMBO Mol Med 2023; 15:e17248. [PMID: 37458145 PMCID: PMC10405064 DOI: 10.15252/emmm.202217248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Endocrine therapies targeting estrogen signaling, such as tamoxifen, have significantly improved management of estrogen receptor alpha (ERα)-positive breast cancers. However, their efficacy is limited by intrinsic and acquired resistance to treatment, and there is currently no predictive marker of response to these anti-estrogens to guide treatment decision. Here, using two independent cohorts of breast cancer patients, we identified nuclear PRMT5 expression as an independent predictive marker of sensitivity to tamoxifen. Mechanistically, we discovered that tamoxifen stimulates ERα methylation by PRMT5, a key event for its binding to corepressors such as SMRT and HDAC1, participating in the inhibition of the transcriptional activity of ERα. Although PRMT5 is mainly localized in the cytoplasm of tumor cells, our analyses show that tamoxifen triggers its nuclear translocation in tamoxifen-sensitive tumors but not in resistant ones. Hence, we unveil a biomarker of sensitivity to tamoxifen in ERα-positive breast tumors that could be used to enhance the response of breast cancer patients to endocrine therapy, by fostering its nuclear expression.
Collapse
Affiliation(s)
- Coralie Poulard
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Thuy Ha Pham
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Youenn Drouet
- Département Prévention et Santé PubliqueCentre Léon BérardLyonFrance
| | - Julien Jacquemetton
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Ausra Surmielova
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| | - Loay Kassem
- Clinical Oncology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Benoite Mery
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
- Oncology DepartmentCentre Leon BérardLyonFrance
| | - Christine Lasset
- Département Prévention et Santé PubliqueCentre Léon BérardLyonFrance
- CNRS UMR 5558 LBBEUniversité de LyonVilleurbanneFrance
| | | | - Isabelle Treilleux
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
- Pathology DepartmentCentre Leon BérardLyonFrance
| | | | - Olivier Trédan
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
- Oncology DepartmentCentre Leon BérardLyonFrance
| | - Muriel Le Romancer
- Université de LyonLyonFrance
- Inserm U1052Centre de Recherche en Cancérologie de LyonLyonFrance
- CNRS UMR5286Centre de Recherche en Cancérologie de LyonLyonFrance
| |
Collapse
|
4
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
5
|
Post-Translational Modification of ZEB Family Members in Cancer Progression. Int J Mol Sci 2022; 23:ijms232315127. [PMID: 36499447 PMCID: PMC9737314 DOI: 10.3390/ijms232315127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Post-translational modification (PTM), the essential regulatory mechanisms of proteins, play essential roles in physiological and pathological processes. In addition, PTM functions in tumour development and progression. Zinc finger E-box binding homeobox (ZEB) family homeodomain transcription factors, such as ZEB1 and ZEB2, play a pivotal role in tumour progression and metastasis by induction epithelial-mesenchymal transition (EMT), with activation of stem cell traits, immune evasion and epigenetic reprogramming. However, the relationship between ZEB family members' post-translational modification (PTM) and tumourigenesis remains largely unknown. Therefore, we focussed on the PTM of ZEBs and potential therapeutic approaches in cancer progression. This review provides an overview of the diverse functions of ZEBs in cancer and the mechanisms and therapeutic implications that target ZEB family members' PTMs.
Collapse
|
6
|
Wang W, Meng Y, Chen Y, Yu Y, Wang H, Yang S, Sun W. A comprehensive analysis of LMO2 pathogenic regulatory profile during T-lineage development and leukemic transformation. Oncogene 2022; 41:4079-4090. [PMID: 35851847 DOI: 10.1038/s41388-022-02414-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
Abstract
LMO2 is a well-known leukemic proto-oncogene, its ectopic expression in T-lineage specifically initiates malignant transformation of immature T cells and ultimately causes the onset of acute T-lymphocytic leukemia (T-ALL) in both mouse models and human patients. In this study, we systematically explored the LMO2 performance on the profiles of transcriptome, DNA-binding and protein interactions during T-lineage development in the pre-leukemic stage. Our data indicated that large-scale transcriptional dysregulation caused by LMO2 primarily occurred in DN3 thymocytes, characterized by enriched upregulation of the target genes of typical LMO2 complex, RUNX, ETS and STATs, and ectopic LMO2 primarily targeted to RUNX motifs along with intensive interaction with RUNX1 and H3K4 methyltransferase component ASH2L in this stage. However, binding of LMO2 on specific motifs was largely reduced in the following DP and SP stages, along with gradually disappeared LMO2-RUNX1 and LMO2-ASH2L interactions and less alteration of certain transcriptional factor profiles. Moreover, LMO2 showed relatively less influence on cellular behavior of DN3 thymocyte whereas displayed more prominent effects in DP and SP stages, including promoting Notch signaling and cell cycles. These findings provide a high-resolution landscape of the pathogenic role of LMO2 during T-lineage development in molecular level, and may benefit further clinical investigations for LMO2-associated T-lineage malignancies.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yingying Meng
- School of Medicine, Nankai University, Tianjin, China
| | - Yaxin Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Yanhong Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Hang Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Lima de Oliveira J, Moré Milan T, Longo Bighetti‐Trevisan R, Fernandes RR, Leopoldino AM, Almeida LO. Epithelial‐mesenchymal transition and cancer stem cells: a route to acquired cisplatin resistance through epigenetics in HNSCC. Oral Dis 2022. [DOI: 10.1111/odi.14209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/02/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Julia Lima de Oliveira
- Department of Basic and Oral Biology School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Thaís Moré Milan
- Department of Basic and Oral Biology School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Rayana Longo Bighetti‐Trevisan
- Department of Basic and Oral Biology School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Roger Rodrigo Fernandes
- Department of Basic and Oral Biology School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Luciana Oliveira Almeida
- Department of Basic and Oral Biology School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
8
|
Grabowicz IE, Wilczyński B, Kamińska B, Roura AJ, Wojtaś B, Dąbrowski MJ. The role of epigenetic modifications, long-range contacts, enhancers and topologically associating domains in the regulation of glioma grade-specific genes. Sci Rep 2021; 11:15668. [PMID: 34341417 PMCID: PMC8329071 DOI: 10.1038/s41598-021-95009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Genome-wide studies have uncovered specific genetic alterations, transcriptomic patterns and epigenetic profiles associated with different glioma types. We have recently created a unique atlas encompassing genome-wide profiles of open chromatin, histone H3K27ac and H3Kme3 modifications, DNA methylation and transcriptomes of 33 glioma samples of different grades. Here, we intersected genome-wide atlas data with topologically associating domains (TADs) and demonstrated that the chromatin organization and epigenetic landscape of enhancers have a strong impact on genes differentially expressed in WHO low grade versus high grade gliomas. We identified TADs enriched in glioma grade-specific genes and/or epigenetic marks. We found the set of transcription factors, including REST, E2F1 and NFKB1, that are most likely to regulate gene expression in multiple TADs, containing specific glioma-related genes. Moreover, many genes associated with the cell-matrix adhesion Gene Ontology group, in particular 14 PROTOCADHERINs, were found to be regulated by long-range contacts with enhancers. Presented results demonstrate the existence of epigenetic differences associated with chromatin organization driving differential gene expression in gliomas of different malignancy.
Collapse
Affiliation(s)
- Ilona E Grabowicz
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland.
| | - Bartek Wilczyński
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Bożena Kamińska
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Adria-Jaume Roura
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał J Dąbrowski
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
9
|
Li Y, Wu Y, Hu Y. Metabolites in the Tumor Microenvironment Reprogram Functions of Immune Effector Cells Through Epigenetic Modifications. Front Immunol 2021; 12:641883. [PMID: 33927716 PMCID: PMC8078775 DOI: 10.3389/fimmu.2021.641883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cellular metabolism of both cancer and immune cells in the acidic, hypoxic, and nutrient-depleted tumor microenvironment (TME) has attracted increasing attention in recent years. Accumulating evidence has shown that cancer cells in TME could outcompete immune cells for nutrients and at the same time, producing inhibitory products that suppress immune effector cell functions. Recent progress revealed that metabolites in the TME could dysregulate gene expression patterns in the differentiation, proliferation, and activation of immune effector cells by interfering with the epigenetic programs and signal transduction networks. Nevertheless, encouraging studies indicated that metabolic plasticity and heterogeneity between cancer and immune effector cells could provide us the opportunity to discover and target the metabolic vulnerabilities of cancer cells while potentiating the anti-tumor functions of immune effector cells. In this review, we will discuss the metabolic impacts on the immune effector cells in TME and explore the therapeutic opportunities for metabolically enhanced immunotherapy.
Collapse
Affiliation(s)
- Yijia Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.,Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yangzhe Wu
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.,Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yi Hu
- Microbiology and Immunology Department, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Li JF, Ma XJ, Ying LL, Tong YH, Xiang XP. Multi-Omics Analysis of Acute Lymphoblastic Leukemia Identified the Methylation and Expression Differences Between BCP-ALL and T-ALL. Front Cell Dev Biol 2021; 8:622393. [PMID: 33553159 PMCID: PMC7859262 DOI: 10.3389/fcell.2020.622393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) as a common cancer is a heterogeneous disease which is mainly divided into BCP-ALL and T-ALL, accounting for 80–85% and 15–20%, respectively. There are many differences between BCP-ALL and T-ALL, including prognosis, treatment, drug screening, gene research and so on. In this study, starting with methylation and gene expression data, we analyzed the molecular differences between BCP-ALL and T-ALL and identified the multi-omics signatures using Boruta and Monte Carlo feature selection methods. There were 7 expression signature genes (CD3D, VPREB3, HLA-DRA, PAX5, BLNK, GALNT6, SLC4A8) and 168 methylation sites corresponding to 175 methylation signature genes. The overall accuracy, accuracy of BCP-ALL, accuracy of T-ALL of the RIPPER (Repeated Incremental Pruning to Produce Error Reduction) classifier using these signatures evaluated with 10-fold cross validation repeated 3 times were 0.973, 0.990, and 0.933, respectively. Two overlapped genes between 175 methylation signature genes and 7 expression signature genes were CD3D and VPREB3. The network analysis of the methylation and expression signature genes suggested that their common gene, CD3D, was not only different on both methylation and expression levels, but also played a key regulatory role as hub on the network. Our results provided insights of understanding the underlying molecular mechanisms of ALL and facilitated more precision diagnosis and treatment of ALL.
Collapse
Affiliation(s)
- Jin-Fan Li
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Jing Ma
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin-Lin Ying
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying-Hui Tong
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xue-Ping Xiang
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells. Int J Mol Sci 2020; 21:ijms21062247. [PMID: 32213936 PMCID: PMC7139697 DOI: 10.3390/ijms21062247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022] Open
Abstract
To produce the wide range of blood and immune cell types, haematopoietic stem cells can “choose” directly from the entire spectrum of blood cell fate-options. Affiliation to a single cell lineage can occur at the level of the haematopoietic stem cell and these cells are therefore a mixture of some pluripotent cells and many cells with lineage signatures. Even so, haematopoietic stem cells and their progeny that have chosen a particular fate can still “change their mind” and adopt a different developmental pathway. Many of the leukaemias arise in haematopoietic stem cells with the bulk of the often partially differentiated leukaemia cells belonging to just one cell type. We argue that the reason for this is that an oncogenic insult to the genome “hard wires” leukaemia stem cells, either through development or at some stage, to one cell lineage. Unlike normal haematopoietic stem cells, oncogene-transformed leukaemia stem cells and their progeny are unable to adopt an alternative pathway.
Collapse
|
12
|
Zhang Y, Xu L, Li A, Han X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed Pharmacother 2018; 110:400-408. [PMID: 30530042 DOI: 10.1016/j.biopha.2018.11.112] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023] Open
Abstract
Highly expressed Zinc-finger E-box binding protein 1 (ZEB1) is significantly associated with the malignancy of various cancers. Signal transduction and activation of ZEB1 play important roles in cancer transformation and epithelial-mesenchymal transition (EMT). Emerging evidence suggests that ZEB1 drives the induction of EMT with activation of stem cell traits, immune evasion and epigenetic reprogramming. As an ideal target for EMT research, ZEB1 has been extensively studied for decades. However, the link between ZEB1 and epigenetic regulation of EMT has only recently been discovered. ZEB1 facilitates the epigenetic silencing of E-cadherin by recruiting multiple chromatin enzymes of E-cadherin promoter, such as histone deacetylases (HDACs), DNA methyltransferase (DNMT) and ubiquitin ligase. Destruction of the connection between ZEB1 and these chromatin-modifying enzymes may represent an efficient for treating cancer. In this review, we outlined the biological function of ZEB1 in tumorigenic progression and epigenetic modifications and elucidate its transcriptional network, which is a suitable potential target for the design of novel anticancer drugs.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Lei Xu
- Pharmaceutical Preparation Section, Hospital of Laiwu Steel Group, 68 Xinxing Road, Laigang 271126, Shandong Province, China
| | - Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong Province, China.
| |
Collapse
|