1
|
Zhu L, Liu YP, Yuan-Wang, Sun BX, Huang YT, Zhao JK, Liu JF, Yu LM, Wang HS. E3 ubiquitin ligase SYVN1 as a promising therapeutic target for diverse human diseases. Pharmacol Res 2025; 212:107603. [PMID: 39818260 DOI: 10.1016/j.phrs.2025.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Numerous studies conducted in recent years indicate that mammalian E3 ubiquitin ligases serve as key regulators in the maintenance of cellular homeostasis by targeting the ubiquitination of substrate proteins and activating downstream signaling pathways. SYVN1, an E3 ubiquitin ligase, is characterized by its significant functions in regulating various biological processes, including molecular mechanisms related to gene expression, signaling pathways, and cell death, among others. Consequently, SYVN1 plays a crucial role in both normal human physiology and the pathogenesis of various diseases, such as oncogenesis, cardiovascular disorders, immune regulation, skeletal anomalies, and neurological diseases. This review synthesizes recent findings regarding the physiological and pathophysiological roles of SYVN1, offering new insights into potential strategies for the prevention and treatment of human diseases, as well as suggesting avenues for future drug development. In this Review, we summarize the latest findings regarding the physiological and pathophysiological roles of SYVN1, elucidating the mechanisms by which SYVN1 can regulate the progression of various diseases in humans. These important findings provide new avenues for further investigation of SYVN1 protein, new insights into potential strategies to prevent and treat human diseases, and new directions for future drug development.
Collapse
Affiliation(s)
- Li Zhu
- Graduate School of Dalian Medical University, Dalian, Liaoning 116000, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuan-Wang
- Graduate School of Dalian Medical University, Dalian, Liaoning 116000, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Bo-Xuan Sun
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Yu-Ting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Ji-Kai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jian-Feng Liu
- First School of Clinical Medicine, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Li-Ming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| | - Hui-Shan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Moghadam RK, Daraei A, Haddadi M, Mardi A, Karamali N, Rezaiemanesh A. Casting Light on the Janus-Faced HMG-CoA Reductase Degradation Protein 1: A Comprehensive Review of Its Dualistic Impact on Apoptosis in Various Diseases. Mol Neurobiol 2024; 61:6842-6863. [PMID: 38356096 DOI: 10.1007/s12035-024-03994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Nowadays, it is well recognized that apoptosis, as a highly regulated cellular process, plays a crucial role in various biological processes, such as cell differentiation. Dysregulation of apoptosis is strongly implicated in the pathophysiology of numerous disorders, making it essential to comprehend its underlying mechanisms. One key factor that has garnered significant attention in the regulation of apoptotic pathways is HMG-CoA reductase degradation protein 1, also known as HRD1. HRD1 is an E3 ubiquitin ligase located in the endoplasmic reticulum (ER) membrane. Its primary role involves maintaining the quality control of ER proteins by facilitating the ER-associated degradation (ERAD) pathway. During ER stress, HRD1 aids in the elimination of misfolded proteins that accumulate within the ER. Therefore, HRD1 plays a pivotal role in the regulation of apoptotic pathways and maintenance of ER protein quality control. By targeting specific protein substrates and affecting apoptosis-related pathways, HRD1 could be an exclusive therapeutic target in different disorders. Dysregulation of HRD1-mediated processes contributes significantly to the pathophysiology of various diseases. The purpose of this review is to assess the effect of HRD1 on the pathways related to apoptosis in various diseases from a therapeutic perspective.
Collapse
Affiliation(s)
- Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Arshia Daraei
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Maryam Haddadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran.
| |
Collapse
|
3
|
Gu C, Liu Y, An X, Yin G, Sun C. Dysregulated SYVN1 promotes CAV1 protein ubiquitination and accentuates ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107668. [PMID: 38423151 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Stroke is a major cause of death and severe disability, and there remains a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke (IS) to protect the brain against damage before and during recanalization. Caveolin-1 (CAV1), an integrated protein that is located at the caveolar membrane, has been reported to exert neuroprotective effects during IS. Nevertheless, the mechanism remains largely unknown. Here, we explored the upstream modifiers of CAV1 in IS. METHODS E3 ubiquitin ligases of CAV1 that are differentially expressed in IS were screened using multiple databases. The transcription factor responsible for the dysregulation of E3 ubiquitin-protein ligase synoviolin (SYVN1) in IS was predicted and verified. Genetic manipulations by lentiviral vectors were applied to investigate the effects of double-strand-break repair protein rad21 homolog (RAD21), SYVN1, and CAV1 in a middle cerebral artery occlusion (MCAO) mouse model and mouse HT22 hippocampal neurons induced by oxygen-glucose deprivation (OGD). RESULTS SYVN1 was highly expressed in mice with MCAO, and knockdown of SYVN1 alleviated IS injury in mice, as evidenced by limited infarction volume, the lower water content in the brain, and repressed apoptosis and inflammatory response. RAD21 inhibited the transcription of SYVN1, thereby reducing the ubiquitination modification of CAV1. Overexpression of RAD21 elicited a neuroprotective role as well in mice with MCAO and HT22 induced with OGD, which was overturned by SYVN1. CONCLUSION Transcriptional repression of SYVN1 by RAD21 alleviates IS in mice by reducing ubiquitination modification of CAV1.
Collapse
Affiliation(s)
- Chunjie Gu
- Department of Neurology, The First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China.
| | - Yang Liu
- Department of Rheumatology, The First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China.
| | - Xiuli An
- Department of Neurology, The Second Hospital of Harbin, Harbin 150056, Heilongjiang, China.
| | - Gang Yin
- Department of Neurology, The First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China.
| | - Chenghe Sun
- Department of Neurology, The First Hospital of Qiqihar, Qiqihar 161005, Heilongjiang, China.
| |
Collapse
|
4
|
Sun Y, Dong J, Chai X, Wang J, Li B, Yang J. Semaphorin‑3A alleviates cardiac hypertrophy by regulating autophagy. Exp Ther Med 2024; 27:38. [PMID: 38125367 PMCID: PMC10731408 DOI: 10.3892/etm.2023.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/13/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiac hypertrophy, characterized by cardiomyocyte enlargement, is an adaptive response of the heart to certain hypertrophic stimuli; however, prolonged hypertrophy results in cardiac dysfunction and can ultimately cause heart failure. The present study evaluated the role of semaphorin-3A (Sema3A), a neurochemical inhibitor, in cardiac hypertrophy, utilizing an isoproterenol (ISO) induced H9c2 cell model. Cells were stained with rhodamine-phalloidin to assess the cell surface area and reverse transcription-quantitative PCR was performed to quantify mRNA expression levels of Sema3A, brain natriuretic factor (BNF) and β-myosin heavy chain (β-MHC). The protein expression levels of the autophagy-related proteins light chain 3 (LC3), p62 and Beclin-1, and the Akt/mTOR signaling pathway associated proteins Akt, phosphorylated (p)-Akt, mTOR, p-mTOR, 4E-binding protein 1 (4EBP1) and p-4EBP1 were semi-quantified using western blotting. Rapamycin, a canonical autophagy inducer, was administered to H9c2 cells to elucidate the regulatory mechanism of Sema3A. The results indicated significantly increased cell surface area and elevated BNF and β-MHC mRNA expression levels, increased LC3II/I ratio and Beclin-1 protein expression levels and significantly decreased p62 protein expression levels after treatment of H9c2 cardiomyocytes with ISO for 24 h. Sema3A overexpression improved ISO-induced hypertrophy in H9c2 cells, indicated by decreased cell surface area and reduced BNF and β-MHC mRNA expression levels. Moreover, Sema3A overexpression inhibited ISO-induced autophagy in H9c2 cells, indicated by decreased LC3II/I ratio and Beclin-1 protein expression levels and increased p62 protein expression levels. The autophagy activator rapamycin partially inhibited the protective effect of Sema3A on ISO-induced hypertrophy. Sema3A overexpression suppressed the decrease of the protein expression levels of p-Akt, mTOR and their downstream target 4EBP1, which is induced by ISO. Collectively, these results suggested Sema3A prevented ISO-induced cardiac hypertrophy by inhibiting autophagy via the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu Sun
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Jin Dong
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Xiaohong Chai
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Jingping Wang
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Bao Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jinjing Yang
- Department of Cardiology, Shanxi Province Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
5
|
Xia B, Li Q, Zheng K, Wu J, Huang C, Liu K, You Q, Yuan X. Down-regulation of Hrd1 protects against myocardial ischemia-reperfusion injury by regulating PPARα to prevent oxidative stress, endoplasmic reticulum stress, and cellular apoptosis. Eur J Pharmacol 2023; 954:175864. [PMID: 37392829 DOI: 10.1016/j.ejphar.2023.175864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
The E3 ubiquitin ligase HMG-CoA reductase degradation protein 1 (Hrd1) is a key enzyme for ER-associated degradation of misfolded proteins. Its role in ischemic heart disease has not been fully elucidated. Here, we investigated its effect on oxidative status and cell survival in cardiac ischemia-reperfusion injury (MIRI). We found that virus-induced down-regulation of Hrd1 expression limited infarct size, decreased creatinine kinase (CK) and lactate dehydrogenase (LDH), and preserved cardiac function in mice subjected to left anterior descending coronary artery ligation and reperfusion. Silencing of the Hrd1 gene also prevented the ischemia/reperfusion (I/R)-induced (i) increase in dihydroethidium (DHE) intensity, mitochondrial production of reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO), (ii) decrease in total antioxidant capacity (T-AOC) and glutathione (GSH), (iii) disruption of mitochondrial membrane potential, and (iv) increase in the expression of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) in ischemic heart tissue. In addition, down-regulation of Hrd1 expression prevented the abnormally increased caspase-3/caspase-9/Bax expression and decreased Bcl-2 expression in ischemic heart tissue of I/R mice. Further analysis showed that the I/R stimulus reduced peroxisome proliferation activated receptor α (PPARα) expression in ischemic heart tissue, which was partially prevented by down-regulation of Hrd1. Pharmacological inhibition of PPARα was able to abolish the preventive effect of down-regulation of Hrd1 on oxidative stress, endoplasmic reticulum stress, and cellular apoptosis in ischemic heart tissue. These data suggest that down-regulation of Hrd1 protects the heart from I/R-induced damage by suppressing oxidative stress and cellular apoptosis likely through PPARα.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Luo H, Jiao Q, Shen C, Shao C, Xie J, Chen Y, Feng X, Zhang X. Unraveling the roles of endoplasmic reticulum-associated degradation in metabolic disorders. Front Endocrinol (Lausanne) 2023; 14:1123769. [PMID: 37455916 PMCID: PMC10339828 DOI: 10.3389/fendo.2023.1123769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Misfolded proteins retained in the endoplasmic reticulum cause many human diseases. ER-associated degradation (ERAD) is one of the protein quality and quantity control system located at ER, which is responsible for translocating the misfolded proteins or properly folded but excess proteins out of the ER for proteasomal degradation. Recent studies have revealed that mice with ERAD deficiency in specific cell types exhibit impaired metabolism homeostasis and metabolic diseases. Here, we highlight the ERAD physiological functions in metabolic disorders in a substrate-dependent and cell type-specific manner.
Collapse
Affiliation(s)
- Hui Luo
- *Correspondence: Hui Luo, ; Xingwei Zhang,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Guo Z, Li Y, Chen M, Gu Y, Chen Y, Zhao Y, Tang P. Semaphorin3A regulates mitochondrial apoptosis in RAW264.7 cells in vitro. Tissue Cell 2022; 75:101711. [DOI: 10.1016/j.tice.2021.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
|
8
|
Jin Y, Cheng X, Huang X, Ding F, Lee SR, Wang F, Lu X, Su D, Chen B. The role of Hrd1 in ultraviolet (UV) radiation induced photoaging. Aging (Albany NY) 2020; 12:21273-21289. [PMID: 33168784 PMCID: PMC7695362 DOI: 10.18632/aging.103851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/20/2020] [Indexed: 01/20/2023]
Abstract
The purpose of the present study was to evaluate the role of Hrd1 in the ultraviolet (UV) radiation induced photoaging and explore its potential mechanism. The nude mice were exposed to the UVA/UVB irradiation for 10 weeks. The animals were subcutaneously injected with AAV5-NC, Hrd1-shRNA-AAV5, or Hrd1-overexpression-AAV5. The HSF cells were also transfected with Ad-NC, Ad-shRNA-Hrd1, or Ad-Hrd1, and irradiated by UVA/UVB stimulation. The clinical skin samples were harvested for detecting Hrd1 and IGF-1R expressions. As a result, the knockdown of Hrd1 attenuated the histopathological alteration and collagen degradation in UV-induced nude mice. The inhibition of Hrd1 by Hrd1-shRNA-AAV5 and Ad-shRNA-Hrd1 inhibited the Hrd1 expression and promoted IGF-1R, Type I collagen and type III collagen in mice and HSF cells. The overexpression of Hrd1 exerted the reverse effect. The Co-IP assay also indicated the interaction between Hrd1 and IGF-1R. Hrd1-mediated IGF-1R downregulation and collagen degradation were also observed in clinical skin samples. In conclusion, the present results demonstrated that Hrd1 degraded IGF-1R and collagen formation in UV-induced photoaging.
Collapse
Affiliation(s)
- Yi Jin
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xianye Cheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin Huang
- Department of Pediatric and Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Fan Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Sae Rom Lee
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Fengdi Wang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoyi Lu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Dongming Su
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Bin Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
9
|
Li X, Wei C, Zhang Z, Jin Q, Xiao X. MiR-134-5p Regulates Myocardial Apoptosis and Angiogenesis by Directly Targeting KDM2A After Myocardial Infarction. Int Heart J 2020; 61:815-821. [DOI: 10.1536/ihj.19-468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xue Li
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| | - Caiwen Wei
- Department of Cardiology, Chongming Branch Xinhua Hospital affiliated to Medical College of Shanghai Jiaotong University
| | - Zhaozhi Zhang
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| | - Qu Jin
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| | - Xue Xiao
- Department of Heart Disease, Affiliated Hospital to Changchun University of Chinese Medicine
| |
Collapse
|