1
|
Shi H, Xu X, Wang S, Chen Q, Zhang F, Guo H, Lu W, Qiao F. The relationship between CXCR6+CD8+T cells and clinicopathological parameters in patients with primary biliary cholangitis. Hepatol Int 2024; 18:1555-1565. [PMID: 39134906 DOI: 10.1007/s12072-024-10715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND CXCR6+CD8+T cells have been implicated in the pathogenesis of various liver and autoimmune diseases. However, their involvement in primary biliary cholangitis (PBC) has not been elucidated. METHODS We used immunohistochemistry and flow cytometry to quantify CXCR6+CD8+T cells in hepatic tissue and peripheral blood samples obtained from CXCR6+CD8+T cells obtained from PBC patients. Then, we performed comprehensive statistical analyses to access the correlation between the abundance of these cells and clinical as well as pathological data across different stages of PBC. RESULTS Our research revealed that CXCR6+ cell frequencies in CD3+CD8+T cells from PBC patients significantly exceeded that of healthy controls (HCs) (2.24 vs. 0.61%, p < 0.01). A similar pattern emerged for hepatic CXCR6+CD8+T cell counts, which were notably higher in the PBC cohort compared to HCs. Our cohort consisted of 118 PBC patients, categorized into 62 early-stage (E-PBC) and 56 late-stage (L-PBC) cases. Notably, significant disparities existed between these groups in terms of liver enzyme and lipid profile levels (p < 0.05), with no notable differences observed in gender, age, blood counts, cholesterol levels, or autoantibodies (p > 0.05). Intriguingly, the quantity of hepatic CXCR6+CD8+T cells per high power field (HPF) was significantly elevated in both E-PBC and L-PBC patients as opposed to normal liver samples, indicating a substantial increase in these cells across all stages of PBC (p = 0.000). Spearman's rank correlation analysis showed a positive correlation between CXCR6+CD8+T cell counts and serum levels of Alkaline Phosphatase (AKP) and Gamma-Glutamyl Transferase (GGT), ANA, IgG and IgM, while revealing a negligible correlation with Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST). Subsequent findings indicated significant variances in CXCR6+ cell numbers not only among different PBC stages but also across various degrees of inflammation and fibrosis (p ≤ 0.007). In a follow-up study post-Ursodeoxycholic Acid (UDCA) treatment, stark differences were identified in biochemical and immunohistochemical profiles between responder (31 patients) and non-responder (33 patients) groups (p < 0.05). A Wilcoxon rank-sum test further demonstrated a significant difference in the level of hepatic CXCR6+CD8+T cells between these two response groups (p = 0.002). CONCLUSION CXCR6+CD8+T cells play a vital role in the pathogenesis of PBC, exhibiting correlations with the extent of inflammation, staging of liver fibrosis, and response to pharmacological interventions in PBC patients.
Collapse
Affiliation(s)
- Huilian Shi
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| | - Xiangtao Xu
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China
| | - Shuangshuang Wang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinlei Chen
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China
| | - Fan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China
| | - Haiyan Guo
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| | - Weiting Lu
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| | - Fei Qiao
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
2
|
Jia K, Ma Z, Zhang Y, Xie K, Li J, Wu J, Qu J, Li F, Li X. Picroside II promotes HSC apoptosis and inhibits the cholestatic liver fibrosis in Mdr2 -/- mice by polarizing M1 macrophages and balancing immune responses. Chin J Nat Med 2024; 22:582-598. [PMID: 39059828 DOI: 10.1016/s1875-5364(24)60674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 07/28/2024]
Abstract
Liver fibrosis is characterized by chronic inflammatory responses and progressive fibrous scar formation. Macrophages play a central role in the pathogenesis of hepatic fibrosis by reconstructing the immune microenvironment. Picroside II (PIC II), extracted from Picrorhizae Rhizoma, has demonstrated therapeutic potential for various liver damage. However, the mechanisms by which macrophage polarization initiates immune cascades and contributes to the development of liver fibrosis, and whether this process can be influenced by PIC II, remain unclear. In the current study, RNA sequencing and multiple molecular approaches were utilized to explore the underlying mechanisms of PIC II against liver fibrosis in multidrug-resistance protein 2 knockout (Mdr2-/-) mice. Our findings indicate that PIC II activates M1-polarized macrophages to recruit natural killer cells (NK cells), potentially via the CXCL16-CXCR6 axis. Additionally, PIC II promotes the apoptosis of activated hepatic stellate cells (aHSCs) and enhances the cytotoxic effects of NK cells, while also reducing the formation of neutrophil extracellular traps (NETs). Notably, the anti-hepatic fibrosis effects associated with PIC II were largely reversed by macrophage depletion in Mdr2-/- mice. Collectively, our research suggests that PIC II is a potential candidate for halting the progression of liver fibrosis.
Collapse
Affiliation(s)
- Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Wang FT, Wu TQ, Lin Y, Jiao YR, Li JY, Ruan Y, Yin L, Chen CQ. The role of the CXCR6/CXCL16 axis in the pathogenesis of fibrotic disease. Int Immunopharmacol 2024; 132:112015. [PMID: 38608478 DOI: 10.1016/j.intimp.2024.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
CXC chemokine receptor 6 (CXCR6), a seven-transmembrane domain G-protein-coupled receptor, plays a pivotal regulatory role in inflammation and tissue damage through its interaction with CXC chemokine ligand 16 (CXCL16). This axis is implicated in the pathogenesis of various fibrotic diseases and correlates with clinical parameters that indicate disease severity, activity, and prognosis in organ fibrosis, including afflictions of the liver, kidney, lung, cardiovascular system, skin, and intestines. Soluble CXCL16 (sCXCL16) serves as a chemokine, facilitating the migration and recruitment of CXCR6-expressing cells, while membrane-bound CXCL16 (mCXCL16) functions as a transmembrane protein with adhesion properties, facilitating intercellular interactions by binding to CXCR6. The CXCR6/CXCL16 axis is established to regulate the cycle of damage and repair during chronic inflammation, either through modulating immune cell-mediated intercellular communication or by independently influencing fibroblast homing, proliferation, and activation, with each pathway potentially culminating in the onset and progression of fibrotic diseases. However, clinically exploiting the targeting of the CXCR6/CXCL16 axis requires further elucidation of the intricate chemokine interactions within fibrosis pathogenesis. This review explores the biology of CXCR6/CXCL16, its multifaceted effects contributing to fibrosis in various organs, and the prospective clinical implications of these insights.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tian-Qi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yin Lin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi-Ran Jiao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Yuan Li
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chun-Qiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
4
|
Wang F, Li Y, Yang Z, Cao W, Liu Y, Zhao L, Zhang T, Zhao C, Yu J, Yu J, Zhou J, Zhang X, Li PP, Han M, Feng S, Ng BWL, Hu ZW, Jiang E, Li K, Cui B. Targeting IL-17A enhances imatinib efficacy in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia. Nat Commun 2024; 15:203. [PMID: 38172124 PMCID: PMC10764960 DOI: 10.1038/s41467-023-44270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Dysregulated hematopoietic niches remodeled by leukemia cells lead to imbalances in immunological mediators that support leukemogenesis and drug resistance. Targeting immune niches may ameliorate disease progression and tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive B-ALL (Ph+ B-ALL). Here, we show that T helper type 17 (Th17) cells and IL-17A expression are distinctively elevated in Ph+ B-ALL patients. IL-17A promotes the progression of Ph+ B-ALL. Mechanistically, IL-17A activates BCR-ABL, IL6/JAK/STAT3, and NF-kB signalling pathways in Ph+ B-ALL cells, resulting in robust cell proliferation and survival. In addition, IL-17A-activated Ph+ B-ALL cells secrete the chemokine CXCL16, which in turn promotes Th17 differentiation, attracts Th17 cells and forms a positive feedback loop supporting leukemia progression. These data demonstrate an involvement of Th17 cells in Ph+ B-ALL progression and suggest potential therapeutic options for Ph+ B-ALL with Th17-enriched niches.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Yunxuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Zhaona Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- Beijing Institute of Biological Products Company Limited, 100176, Beijing, China
- CAMS Key Laboratory of Molecular Mechanisms and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Wenbin Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
| | - Ying Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Luyao Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Chenxi Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Jinmei Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- CAMS Key Laboratory of Molecular Mechanisms and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Jiaojiao Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- CAMS Key Laboratory of Molecular Mechanisms and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Jichao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- CAMS Key Laboratory of Molecular Mechanisms and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Xiaowei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- CAMS Key Laboratory of Molecular Mechanisms and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Ping-Ping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- CAMS Key Laboratory of Molecular Mechanisms and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
| | - Billy Wai-Lung Ng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhuo-Wei Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- CAMS Key Laboratory of Molecular Mechanisms and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
- CAMS Key Laboratory of Molecular Mechanisms and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
5
|
Heymann F, Mossanen JC, Peiseler M, Niemietz PM, Araujo David B, Krenkel O, Liepelt A, Batista Carneiro M, Kohlhepp MS, Kubes P, Tacke F. Hepatic C-X-C chemokine receptor type 6-expressing innate lymphocytes limit detrimental myeloid hyperactivation in acute liver injury. Hepatol Commun 2023; 7:e0102. [PMID: 36972392 PMCID: PMC10503691 DOI: 10.1097/hc9.0000000000000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is characterized by rapid clinical deterioration and high mortality. Acetaminophen (APAP or paracetamol) overdose is a leading cause of ALF, resulting in hepatocellular necrosis with subsequent inflammation, inflicting further liver damage. Infiltrating myeloid cells are early drivers of liver inflammation. However, the role of the abundant population of liver-resident innate lymphocytes, which commonly express the chemokine receptor CXCR6, is incompletely understood in ALF. METHODS We investigated the role of CXCR6-expressing innate lymphocytes using the model of acute APAP toxicity in mice deficient in CXCR6 (Cxcr6gfp/gfp). RESULTS APAP-induced liver injury was strongly aggravated in Cxcr6gfp/gfp mice compared with wild-type counterparts. Immunophenotyping using flow cytometry revealed a reduction in liver CD4+T cells, natural killer (NK) cells, and most prominently, NKT cells, whereas CXCR6 was dispensable for CD8+ T-cell accumulation. CXCR6-deficient mice exhibited excessive neutrophil and inflammatory macrophage infiltration. Intravital microscopy revealed dense cellular clusters of neutrophils in necrotic liver tissue, with higher numbers of clustering neutrophils in Cxcr6gfp/gfp mice. Gene expression analysis linked hyperinflammation in CXCR6 deficiency to increased IL-17 signaling. Although reduced in overall numbers, CXCR6-deficient mice had a shift in NKT cell subsets with increased RORγt-expressing NKT17 cells as a likely source of IL-17. In patients with ALF, we found a prominent accumulation of IL-17-expressing cells. Accordingly, CXCR6-deficient mice lacking IL-17 (Cxcr6gfp/gfpx Il17-/-) had ameliorated liver damage and reduced inflammatory myeloid infiltrates. CONCLUSIONS Our study identifies a crucial role of CXCR6-expressing liver innate lymphocytes as orchestrators in acute liver injury containing IL-17-mediated myeloid cell infiltration. Hence, strengthening the CXCR6-axis or downstream inhibition of IL-17 could yield novel therapeutics in ALF.
Collapse
Affiliation(s)
- Felix Heymann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jana C. Mossanen
- Department of Intensive and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Bruna Araujo David
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Oliver Krenkel
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Anke Liepelt
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Matheus Batista Carneiro
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marlene S. Kohlhepp
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
6
|
Papanastasatou M, Verykokakis M. Innate-like T lymphocytes in chronic liver disease. Front Immunol 2023; 14:1114605. [PMID: 37006304 PMCID: PMC10050337 DOI: 10.3389/fimmu.2023.1114605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
In addition to its metabolic activities, it is now clear that the liver hosts a number of diverse immune cell types that control tissue homeostasis. Foremost among these are innate-like T lymphocytes, including natural killer T (NKT) and mucosal-associated innate T (MAIT) cells, which are a population of specialized T cells with innate characteristics that express semi-invariant T cell receptors with non-peptide antigen specificity. As primary liver residents, innate-like T cells have been associated with immune tolerance in the liver, but also with a number of hepatic diseases. Here, we focus on the biology of NKT and MAIT cells and how they operate during the course of chronic inflammatory diseases that eventually lead to hepatocellular carcinoma.
Collapse
|
7
|
Gu X, Chu Q, Ma X, Wang J, Chen C, Guan J, Ren Y, Wu S, Zhu H. New insights into iNKT cells and their roles in liver diseases. Front Immunol 2022; 13:1035950. [PMID: 36389715 PMCID: PMC9643775 DOI: 10.3389/fimmu.2022.1035950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Qian Y, Shang Z, Gao Y, Wu H, Kong X. Liver Regeneration in Chronic Liver Injuries: Basic and Clinical Applications Focusing on Macrophages and Natural Killer Cells. Cell Mol Gastroenterol Hepatol 2022; 14:971-981. [PMID: 35738473 PMCID: PMC9489753 DOI: 10.1016/j.jcmgh.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Liver regeneration is a necessary but complex process involving multiple cell types besides hepatocytes. Mechanisms underlying liver regeneration after partial hepatectomy and acute liver injury have been well-described. However, in patients with chronic and severe liver injury, the remnant liver cannot completely restore the liver mass and function, thereby involving liver progenitor-like cells (LPLCs) and various immune cells. RESULTS Macrophages are beneficial to LPLCs proliferation and the differentiation of LPLCs to hepatocytes. Also, cells expressing natural killer (NK) cell markers have been studied in promoting both liver injury and liver regeneration. NK cells can promote LPLC-induced liver regeneration, but the excessive activation of hepatic NK cells may lead to high serum levels of interferon-γ, thus inhibiting liver regeneration. CONCLUSIONS This review summarizes the recent research on 2 important innate immune cells, macrophages and NK cells, in LPLC-induced liver regeneration and the mechanisms of liver regeneration during chronic liver injury, as well as the latest macrophage- and NK cell-based therapies for chronic liver injury. These novel findings can further help identify new treatments for chronic liver injury, saving patients from the pain of liver transplantations.
Collapse
Affiliation(s)
- Yihan Qian
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Hou Y, Zhang G. Identification of immune-infiltrating cell-related biomarkers in hepatocellular carcinoma based on gene co-expression network analysis. Diagn Pathol 2021; 16:57. [PMID: 34218795 PMCID: PMC8255019 DOI: 10.1186/s13000-021-01118-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is often caused by chronic liver infection or inflammation. Searching for potential immunotherapy targets will aid the early diagnosis and treatment of HCC. Methods Firstly, detailed HCC data were downloaded from The Cancer Genome Atlas database. GDCRNATools was used for the comprehensive analysis of RNA sequencing data. Subsequently, the CIBERSORT package was used to estimate infiltration scores of 22 types of immune cells in complex samples. Furthermore, hub genes were identified via weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis. In addition, multiple databases were used to validate the expression of hub gene in the tumor tissue. Finally, prognostic, diagnostic and immunohistochemical analysis of key hub genes was performed. Results In the present study, 9 hub genes were identified using WGCNA and PPI network analysis. Furthermore, the expression levels of 9 genes were positively correlated with the infiltration levels of CD8-positive T (CD8+ T) cells. In multiple dataset validations, the expression levels of CCL5, CXCR6, CD3E, and LCK were decreased in cancer tissues. In addition, survival analysis revealed that patients with LCK low expression had a poor survival prognosis (P < 0.05). Immunohistochemistry results demonstrated that CCL5, CD3E and LCK were expressed at low levels in HCC cancer tissues. Conclusion The identification of CCL5, CXCR6, CD3E and LCK may be helpful in the development of early diagnosis and therapy of HCC. LCK may be a potential prognostic biomarker for immunotherapy for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-021-01118-y.
Collapse
Affiliation(s)
- Yinghui Hou
- Department of Gastroenterology, The Second People's Hospital of Liaocheng City, No.306 Jiankang Street, Linqing City, 252600, Shandong Province, China
| | - Guizhi Zhang
- Department of Gastroenterology, The Second People's Hospital of Liaocheng City, No.306 Jiankang Street, Linqing City, 252600, Shandong Province, China.
| |
Collapse
|
10
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|
11
|
Bartneck M, Koppe C, Fech V, Warzecha KT, Kohlhepp M, Huss S, Weiskirchen R, Trautwein C, Luedde T, Tacke F. Roles of CCR2 and CCR5 for Hepatic Macrophage Polarization in Mice With Liver Parenchymal Cell-Specific NEMO Deletion. Cell Mol Gastroenterol Hepatol 2020; 11:327-347. [PMID: 32896623 PMCID: PMC7779787 DOI: 10.1016/j.jcmgh.2020.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Macrophages are key regulators of inflammation and cancer promotion in the liver, and their recruitment and activation is linked to chemokine receptor signaling. However, the exact roles of the chemokine receptors CCR2 and CCR5 for macrophage functions in the liver is obscure. METHODS To study CCR2 and CCR5 in inflammatory liver injury, we used mice with a hepatocyte-specific knock-out of the nuclear factor κB (NF-κB) essential modulator (NEMO), termed NEMOLPC-KO mice, and generated NEMOLPC-KOCcr2-/- and NEMOLPC-KOCcr5-/- mice. NEMOLPC-KO mice develop hepatitis and fibrosis after two and liver tumors after six months. RESULTS We found that both CCR2 and CCR5 deficiency led to reduced fibrosis, while CCR5 deficiency increased steatosis and tumor burden in NEMOLPC-KO mice. CCR2 was required for recruitment of hepatic macrophages, whereas CCR5 promoted stellate cell activation. The reduction of monocytes and macrophages by either anti-Gr1 antibody or clodronate-loaded liposomes (CLL), but not of CD8+ T cells or NK cells, significantly aggravated liver injury in NEMOLPC-KO mice and was further increased in NEMOLPC-KOCcr5-/- mice. CLL-induced liver injury was dampened by the adoptive transfer of ex vivo generated macrophages, whereas the adoptive transfer of control CD115+ immature monocytes or B cells did not reduce liver injury. CONCLUSIONS Although CCR2 and CCR5 principally promote liver fibrosis, they exert differential functions on hepatic macrophages during liver disease progression in NEMOLPC-KO mice. While CCR2 controls the recruitment of monocytes to injured livers, CCR5-dependent functions of liver macrophages limit hepatic injury, thereby reducing steatosis and hepatocarcinogenesis.
Collapse
Affiliation(s)
| | - Christiane Koppe
- Department of Medicine III, RWTH Aachen University, Aachen, Germany
| | - Viktor Fech
- Department of Medicine III, RWTH Aachen University, Aachen, Germany
| | | | - Marlene Kohlhepp
- Department of Medicine III, RWTH Aachen University, Aachen, Germany,Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Sebastian Huss
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Tom Luedde
- Department of Medicine III, RWTH Aachen University, Aachen, Germany,Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH Aachen University, Aachen, Germany,Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany,Reprint requests Address requests for reprints to: Frank Tacke, MD, PhD, Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. fax: +49-30-450-553902.
| |
Collapse
|
12
|
Roderburg C, Wree A, Demir M, Schmelzle M, Tacke F. The role of the innate immune system in the development and treatment of hepatocellular carcinoma. Hepat Oncol 2020; 7:HEP17. [PMID: 32273975 PMCID: PMC7137177 DOI: 10.2217/hep-2019-0007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Most patients present with advanced or metastatic HCC at diagnosis and face a dismal prognosis. Tyrosine kinases are the gold standard treatment for this disease but yield limited survival benefits. Immune checkpoint inhibitors that augment adaptive immunity have been tested in HCC. Complex interactions between tumor cells, lymphocytes and the tumor environment determine the efficacy of such immunotherapies. Innate immune mechanisms – known drivers of liver disease progression in pre-HCC conditions such as fibrosis or cirrhosis – may either support or counteract tumor-related immune activation. In this review, we will highlight current concepts of the role of the innate immune system in hepatocarcinogenesis and discuss their relevance for translation into clinics.
Collapse
Affiliation(s)
- Christoph Roderburg
- Department of Hepatology & Gastroenterology, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| | - Alexander Wree
- Department of Hepatology & Gastroenterology, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| | - Münevver Demir
- Department of Hepatology & Gastroenterology, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| | - Moritz Schmelzle
- Department of Surgery, Charité, Universitätsmedizin Berlin,Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin Institute of Health, Augustenburger, Platz 1 13353, Berlin
| |
Collapse
|
13
|
Reimer KC, Wree A, Roderburg C, Tacke F. New drugs for NAFLD: lessons from basic models to the clinic. Hepatol Int 2019; 14:8-23. [PMID: 31802390 DOI: 10.1007/s12072-019-10001-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
The term nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of increasingly harmful conditions ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to liver fibrosis and end-stage cirrhosis. NAFLD is the currently most common form of chronic liver disease in both adults and children worldwide. As NAFLD evolves as a global pandemic alongside the still growing prevalence of metabolic syndrome, obesity, and diabetes, it is inevitable to develop effective counterstrategies. Over the last decades, great effort has been dedicated to the understanding of the pathogenesis of NAFLD. This includes the development of an array of models for NAFLD, ranging from advanced in vitro (primary cells, 3D cultures, biochip, spheroids, organoids) to in vivo rodent models (particularly in mice). Based on these approaches novel therapies have been proposed and subsequently evaluated for patients with advanced forms of NAFLD, in particular those with NASH and liver fibrosis or cirrhosis. In this review, we delineate the current understanding of disease pathophysiology and depict how novel therapeutic strategies aim to exploit these different mechanisms to ameliorate, treat, or stop progression of NASH. We also discuss obstacles and chances along the way from basic models to promising clinical treatment options.
Collapse
Affiliation(s)
- Katharina C Reimer
- Department of Medicine II, Nephrology/Rheumatology/Clinical Immunology, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité University Medical Center, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medical Center, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medical Center, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
14
|
Affiliation(s)
- Tae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences and Interdisciplinary Program of Clinical Pharmacology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Mossanen JC, Kohlhepp M, Wehr A, Krenkel O, Liepelt A, Roeth AA, Möckel D, Heymann F, Lammers T, Gassler N, Hermann J, Jankowski J, Neumann UP, Luedde T, Trautwein C, Tacke F. CXCR6 Inhibits Hepatocarcinogenesis by Promoting Natural Killer T- and CD4 + T-Cell-Dependent Control of Senescence. Gastroenterology 2019; 156:1877-1889.e4. [PMID: 30710528 DOI: 10.1053/j.gastro.2019.01.247] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Inflammation in the liver provokes fibrosis, but inflammation is also important for tumor surveillance. Inhibitors of chemokine pathways, such as CXCL16 and CXCR6 regulation of lymphocyte trafficking, are being tested as antifibrotic agents, but their effects on the development of hepatocellular carcinoma (HCC) are unclear. We assessed the roles of CXCR6-dependent immune mechanisms in hepatocarcinogenesis. METHODS C57BL/6J wild-type (WT) mice and CXCR6-deficient mice (Cxcr6eGfp/eGfp) were given injections of diethylnitrosamine (DEN) to induce liver cancer and α-galactosylceramide to activate natural killer T (NKT) cells. We also performed studies in mice with conditional, hepatocyte-specific deletion of NEMO, which develop inflammation-associated liver tumors (NemoLPC-KO and NemoLPC-KOCxcr6eGfp/eGfp mice). We collected liver tissues from patients with cirrhosis (n = 43), HCC (n = 35), and neither of these diseases (control individuals, n = 25). Human and mouse liver tissues were analyzed by histology, immunohistochemistry, flow cytometry, RNA expression arrays (from sorted hepatic lymphocytes), and matrix-assisted laser desorption/ionization imaging. Bone marrow was transferred from Cxcr6eGfp/eGfp or WT mice to irradiated C57BL/6J mice, and spleen and liver cells were analyzed by flow cytometry. CD4+ T cells or NKT cells were isolated from the spleen and liver of CD45.1+ WT mice and transferred into CXCR6-deficient mice after DEN injection. RESULTS After DEN injection, CXCR6-deficient mice had a significantly higher tumor burden than WT mice and increased tumor progression, characterized by reduced intrahepatic numbers of invariant NKT and CD4+ T cells that express tumor necrosis factor and interferon gamma. Livers of NemoLPC-KOCxcr6eGfp/eGfp mice had significantly more senescent hepatocytes than livers of NemoLPC-KO mice. In studies of bone-marrow chimeras, adoptive cell transfer experiments, and analyses of NemoLPC-KO mice, we found that NKT and CD4 T cells promote the removal of senescent hepatocytes to prevent hepatocarcinogenesis, and that this process required CXCR6. Injection of WT with α-galactosylceramide increased removal of senescent hepatocytes by NKT cells. We observed peritumoral accumulation of CXCR6-associated lymphocytes in human HCC, which appeared reduced compared with cirrhosis tissues. CONCLUSIONS In studies of mice with liver tumors, we found that CXCR6 mediated NKT-cell and CD4+ T-cell removal of senescent hepatocytes. Antifibrotic strategies to reduce CXCR6 activity in liver, or to reduce inflammation or modulate the immune response, should be tested for their effects on hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jana C Mossanen
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany; Department of Intensive Care, RWTH-University Hospital Aachen, Aachen, Germany
| | - Marlene Kohlhepp
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Alexander Wehr
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany; Department of Hepatology/Gastroenterology, Charité University Medical Center, Berlin, Germany
| | - Oliver Krenkel
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Anke Liepelt
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Anjali A Roeth
- Department of General, Visceral and Transplantation Surgery, RWTH-University Hospital Aachen, Aachen, Germany
| | - Diana Möckel
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH-University Hospital Aachen, Aachen, Germany
| | - Felix Heymann
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany; Department of Hepatology/Gastroenterology, Charité University Medical Center, Berlin, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH-University Hospital Aachen, Aachen, Germany
| | - Nikolaus Gassler
- Institute of Pathology, Clinical Center Braunschweig, Braunschweig, Germany
| | - Juliane Hermann
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen, Germany
| | - Ulf P Neumann
- Department of General, Visceral and Transplantation Surgery, RWTH-University Hospital Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany; Department of Hepatology/Gastroenterology, Charité University Medical Center, Berlin, Germany.
| |
Collapse
|