1
|
Nascimento A, Bruels CC, Donkervoort S, Foley AR, Codina A, Milisenda JC, Estrella EA, Li C, Pijuan J, Draper I, Hu Y, Stafki SA, Pais LS, Ganesh VS, O'Donnell-Luria A, Syeda SB, Carrera-García L, Expósito-Escudero J, Yubero D, Martorell L, Pinal-Fernandez I, Lidov HGW, Mammen AL, Grau-Junyent JM, Ortez C, Palau F, Ghosh PS, Darras BT, Jou C, Kunkel LM, Hoenicka J, Bönnemann CG, Kang PB, Natera-de Benito D. Variants in DTNA cause a mild, dominantly inherited muscular dystrophy. Acta Neuropathol 2023; 145:479-496. [PMID: 36799992 PMCID: PMC10923638 DOI: 10.1007/s00401-023-02551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
DTNA encodes α-dystrobrevin, a component of the macromolecular dystrophin-glycoprotein complex (DGC) that binds to dystrophin/utrophin and α-syntrophin. Mice lacking α-dystrobrevin have a muscular dystrophy phenotype, but variants in DTNA have not previously been associated with human skeletal muscle disease. We present 12 individuals from four unrelated families with two different monoallelic DTNA variants affecting the coiled-coil domain of α-dystrobrevin. The five affected individuals from family A harbor a c.1585G > A; p.Glu529Lys variant, while the recurrent c.1567_1587del; p.Gln523_Glu529del DTNA variant was identified in the other three families (family B: four affected individuals, family C: one affected individual, and family D: two affected individuals). Myalgia and exercise intolerance, with variable ages of onset, were reported in 10 of 12 affected individuals. Proximal lower limb weakness with onset in the first decade of life was noted in three individuals. Persistent elevations of serum creatine kinase (CK) levels were detected in 11 of 12 affected individuals, 1 of whom had an episode of rhabdomyolysis at 20 years of age. Autism spectrum disorder or learning disabilities were reported in four individuals with the c.1567_1587 deletion. Muscle biopsies in eight affected individuals showed mixed myopathic and dystrophic findings, characterized by fiber size variability, internalized nuclei, and slightly increased extracellular connective tissue and inflammation. Immunofluorescence analysis of biopsies from five affected individuals showed reduced α-dystrobrevin immunoreactivity and variably reduced immunoreactivity of other DGC proteins: dystrophin, α, β, δ and γ-sarcoglycans, and α and β-dystroglycans. The DTNA deletion disrupted an interaction between α-dystrobrevin and syntrophin. Specific variants in the coiled-coil domain of DTNA cause skeletal muscle disease with variable penetrance. Affected individuals show a spectrum of clinical manifestations, with severity ranging from hyperCKemia, myalgias, and exercise intolerance to childhood-onset proximal muscle weakness. Our findings expand the molecular etiologies of both muscular dystrophy and paucisymptomatic hyperCKemia, to now include monoallelic DTNA variants as a novel cause of skeletal muscle disease in humans.
Collapse
Affiliation(s)
- Andres Nascimento
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, Esplugues de Llobregat, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Christine C Bruels
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, 420 Delaware Street SE, MMC 295, Minneapolis, MN, 55455, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anna Codina
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jose C Milisenda
- Department of Internal Medicine, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Elicia A Estrella
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chengcheng Li
- Division of Pediatric Neurology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Jordi Pijuan
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Laboratory of Neurogenetics and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Isabelle Draper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Seth A Stafki
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, 420 Delaware Street SE, MMC 295, Minneapolis, MN, 55455, USA
| | - Lynn S Pais
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vijay S Ganesh
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Anne O'Donnell-Luria
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Safoora B Syeda
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laura Carrera-García
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, Esplugues de Llobregat, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jessica Expósito-Escudero
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, Esplugues de Llobregat, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Delia Yubero
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Department of Genetic and Molecular Medicine-IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Loreto Martorell
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Department of Genetic and Molecular Medicine-IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Iago Pinal-Fernandez
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew L Mammen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josep M Grau-Junyent
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Department of Internal Medicine, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, Esplugues de Llobregat, Barcelona, Spain
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Francesc Palau
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Laboratory of Neurogenetics and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Genetic and Molecular Medicine-IPER, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Partha S Ghosh
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Cristina Jou
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Janet Hoenicka
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Laboratory of Neurogenetics and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter B Kang
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, 420 Delaware Street SE, MMC 295, Minneapolis, MN, 55455, USA.
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Neurology, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, Esplugues de Llobregat, Barcelona, Spain.
- Applied Research in Neuromuscular Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
3
|
Zhang J, Zhu M, Li Q, Tang T, Wen L, Zhong J, Zhang R, Yu XQ, Lu Y. Genome-wide identification and characterization of basic helix-loop-helix transcription factors in Spodoptera litura upon pathogen infection. INSECT SCIENCE 2022; 29:977-992. [PMID: 34687267 DOI: 10.1111/1744-7917.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors play an important role in a wide range of metabolic and developmental processes in eukaryotes, and bHLH proteins also participate in immune responses, especially in plants. However, their roles in insects upon entomopathogen infection are unknown. In this study, 54 bHLH genes in 41 families were identified in a polyphagous pest, Spodoptera litura, including a new bHLH gene in group B, which is specifically present in Lepidoptera and was thus named Lep. The conserved amino acids in the bHLH domain, structural architecture, and chromosomal distribution of bHLH genes in S. litura were analyzed. The bHLH genes in Plutella xylostella and Apis mellifera were also updated, and genome-wide comparison and phylogenetic analysis of bHLH members in 5 holometabolous insects were performed. The expression profiles of S. litura bHLH (SlbHLH) genes in 3 tissues at different developmental stages and their responses to S. litura nucleopolyhedrovirus (SpltNPV), Nomuraea rileyi (Nr), and Bacillus thuringiensis (Bt) infection were investigated. More SlbHLHs in group B were expressed and differentially expressed during pathogen infections, and SlbHLHs tended to be downregulated in the midgut of S. litura larvae after B. thuringiensis treatment. Our study provides an overview of bHLH family members in S. litura and their responses to different pathogens used for pest biocontrol. These findings on bHLH members may contribute to uncovering the mechanism of host-pathogen interaction.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Mengyao Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qilin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jielai Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|