1
|
Jia Y, Shen K, Liu J, Li Y, Bai X, Yang Y, He T, Zhang Y, Tong L, Gao X, Zhang Z, Guan H, Hu D. The deacetylation of Akt by SIRT1 inhibits inflammation in macrophages and protects against sepsis. Exp Biol Med (Maywood) 2023; 248:922-935. [PMID: 37211747 PMCID: PMC10525408 DOI: 10.1177/15353702231165707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/12/2023] [Indexed: 05/23/2023] Open
Abstract
Sepsis is characterized by uncontrolled inflammatory response and altered polarization of macrophages at the early phase. Akt is known to drive macrophage inflammatory response. However, how macrophage inflammatory response is fine-tuned by Akt is poorly understood. Here, we found that Lys14 and Lys20 of Akt is deacetylated by the histone deacetylase SIRT1 during macrophage activation to suppress macrophages inflammatory response. Mechanistically, SIRT1 promotes Akt deacetylation to inhibit the activation of NF-κB and pro-inflammatory cytokines. Loss of SIRT1 facilitates Akt acetylation and thus promotes inflammatory cytokines in mouse macrophages, potentially worsen the progression of sepsis in mice. By contrast, the upregulation of SIRT1 in macrophages further contributes to the inhibition of pro-inflammatory cytokines via Akt activation in sepsis. Taken together, our findings establish Akt deacetylation as an essential negative regulatory mechanism that curtails M1 polarization.
Collapse
Affiliation(s)
| | | | | | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Lin Tong
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaowen Gao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhi Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
2
|
Wu J, Wang L, Cui Y, Liu F, Zhang J. Allii Macrostemonis Bulbus: A Comprehensive Review of Ethnopharmacology, Phytochemistry and Pharmacology. Molecules 2023; 28:molecules28062485. [PMID: 36985457 PMCID: PMC10054501 DOI: 10.3390/molecules28062485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
The dried bulbs of Allii Macrostemonis Bulbus (AMB) are called “薤白” in China and are mainly distributed in Asia. The plant species included in the 2020 Edition of the Chinese Pharmacopoeia (ChP) are Allium macrostemon Bunge (called xiaogensuan in Chinese, A. macrostemon) and Allium chinense G. Don (called xie in Chinese, A. chinense), respectively. In the traditional Chinese medicine (TCM) theoretical system, AMB is warm in nature, acrid-bitter taste, and attributive to the heart, lung, stomach, large intestine meridian. AMB has the function of activating Yang and removing stasis, regulating Qi and eliminating stagnation. Modern pharmacological studies have shown that AMB has anti-platelet aggregation, hypolipidemic, anti-atherosclerotic, cardiomyocyte, vascular endothelial cell protection, anti-cancer, anti-bacterial, anti-asthmatic, and anti-oxidant effects. In some Asian countries, AMB is often used to treat coronary heart disease (CHD), angina pectoris (AP), asthma, and diarrhea. This review collates the botanical background, ethnopharmacology, phytochemistry, pharmacological activities, quality control, and toxicological studies of AMB, and provides an outlook on the current research deficiencies and future research priorities of AMB, intending to provide ideas for future research directions and commercial development.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lulu Wang
- Department of Traditional Chinese Medicine, College of Medicine, Changchun Sci-Tech University, Changchun 130600, China
| | - Ying Cui
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Fei Liu
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Department of Traditional Chinese Medicine, College of Medicine, Changchun Sci-Tech University, Changchun 130600, China
- Correspondence:
| |
Collapse
|
3
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
4
|
TRIM16 exerts protective function on myocardial ischemia/reperfusion injury through reducing pyroptosis and inflammation via NLRP3 signaling. Biochem Biophys Res Commun 2022; 632:122-128. [DOI: 10.1016/j.bbrc.2022.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
|
5
|
Dubois-Deruy E, El Masri Y, Turkieh A, Amouyel P, Pinet F, Annicotte JS. Cardiac Acetylation in Metabolic Diseases. Biomedicines 2022; 10:biomedicines10081834. [PMID: 36009379 PMCID: PMC9405459 DOI: 10.3390/biomedicines10081834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Lysine acetylation is a highly conserved mechanism that affects several biological processes such as cell growth, metabolism, enzymatic activity, subcellular localization of proteins, gene transcription or chromatin structure. This post-translational modification, mainly regulated by lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) enzymes, can occur on histone or non-histone proteins. Several studies have demonstrated that dysregulated acetylation is involved in cardiac dysfunction, associated with metabolic disorder or heart failure. Since the prevalence of obesity, type 2 diabetes or heart failure rises and represents a major cause of cardiovascular morbidity and mortality worldwide, cardiac acetylation may constitute a crucial pathway that could contribute to disease development. In this review, we summarize the mechanisms involved in the regulation of cardiac acetylation and its roles in physiological conditions. In addition, we highlight the effects of cardiac acetylation in physiopathology, with a focus on obesity, type 2 diabetes and heart failure. This review sheds light on the major role of acetylation in cardiovascular diseases and emphasizes KATs and KDACs as potential therapeutic targets for heart failure.
Collapse
|
6
|
Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the Emerging Roles on Mitochondrial Function in Diseases. Aging Dis 2022; 13:157-174. [PMID: 35111368 PMCID: PMC8782557 DOI: 10.14336/ad.2021.0729] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial dysfunction may play a crucial role in various diseases due to its roles in the regulation of energy production and cellular metabolism. Serine/threonine kinase (AKT) is a highly recognized antioxidant, immunomodulatory, anti-proliferation, and endocrine modulatory molecule. Interestingly, increasing studies have revealed that AKT can modulate mitochondria-mediated apoptosis, redox states, dynamic balance, autophagy, and metabolism. AKT thus plays multifaceted roles in mitochondrial function and is involved in the modulation of mitochondria-related diseases. This paper reviews the protective effects of AKT and its potential mechanisms of action in relation to mitochondrial function in various diseases.
Collapse
Affiliation(s)
- Xiaoxian Xie
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruonan Shu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunan Yu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zezhi Li
- 2Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Deus LAD, Corrêa HDL, Neves RVP, Reis AL, Honorato FS, Araújo TBD, Souza MK, Haro AS, Silva VL, Barbosa JMDS, Padula IA, Andrade RV, Simões HG, Prestes J, Stone WJ, Melo GF, Rosa TS. Metabolic and hormonal responses to chronic blood-flow restricted resistance training in chronic kidney disease: a randomized trial. Appl Physiol Nutr Metab 2022; 47:183-194. [PMID: 35062832 DOI: 10.1139/apnm-2021-0409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Maintenance of glycemic and lipemic homeostasis can limit the progression of diabetic kidney disease. Resistance training (RT) is effective in controlling glycemia and lipemia in kidney disease; however, the effect of RT with blood flow restriction (RT+BFR) on these metabolic factors has not been investigated. We aimed to verify if chronic (6 months) RT and RT+BFR performed by patients with stage-2 chronic kidney disease (CKD) improves their glycemic homeostasis and immunometabolic profiles. Patients with CKD under conservative treatment (n = 105 (33 females)) from both sexes were randomized into control (n = 35 (11 females); age 57.6 ± 5.2 years), RT (n = 35 (12 females); age 58.0 ± 6.2 years), and RT+BFR (n = 35 (10 females); 58.0 ± 6.4 years) groups. Chronic RT or RT+BFR (6 months) was performed 3 times per week on non-consecutive days with training loading adjusted every 2 months, RT 50%-60%-70% of 1RM, and RT+BFR 30%-40%+50% of 1RM and fixed repetition number. Renal function was estimated with the glomerular filtration rate and serum albumin level. Metabolic, hormonal, and inflammatory assessments were analyzed from blood samples. Six months of RT and RT+BFR were similarly effective in improving glucose homeostasis and hormone mediators of glucose uptake (e.g., irisin, adiponectin, and sirtuin-1), decreasing pro-inflammatory and fibrotic proteins, and attenuating the progression of estimated glomerular filtration rate. Thus, RT+BFR can be considered an additional exercise modality to be included in the treatment of patients with stage 2 chronic kidney disease. Trial registration number: U1111-1237-8231. URL: http://www.ensaiosclinicos.gov.br/rg/RBR-3gpg5w/, no. RBR-3gpg5w. Novelty: Glycemic regulation induced by resistance training prevents the progression of CKD. Chronic RT and RT+BFR promote similar changes in glycemic regulation. RT and RT+BFR can be considered as non-pharmacological tools for the treatment of CKD.
Collapse
Affiliation(s)
- Lysleine Alves de Deus
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Hugo de Luca Corrêa
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | | | - Andrea Lucena Reis
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Fernando Sousa Honorato
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | | | - Michel Kendy Souza
- Department of Nephrology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Anderson Sola Haro
- Department of Nephrology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Victor Lopes Silva
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | | | | | - Rosângela Vieira Andrade
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Herbert Gustavo Simões
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Jonato Prestes
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Whitley J Stone
- School of Kinesiology, Recreation, and Sport, Western Kentucky University, KY, USA
| | - Gislane Ferreira Melo
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| | - Thiago Santos Rosa
- Graduate Program in Physical Education, Catholic University of Brasília (UCB), Taguatinga, DF, Brazil
| |
Collapse
|
8
|
Li F, Geng X, Lee H, Wills M, Ding Y. Neuroprotective Effects of Exercise Postconditioning After Stroke via SIRT1-Mediated Suppression of Endoplasmic Reticulum (ER) Stress. Front Cell Neurosci 2021; 15:598230. [PMID: 33664650 PMCID: PMC7920953 DOI: 10.3389/fncel.2021.598230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
While it is well-known that pre-stroke exercise conditioning reduces the incidence of stroke and the development of comorbidities, it is unclear whether post-stroke exercise conditioning is also neuroprotective. The present study investigated whether exercise postconditioning (PostE) induced neuroprotection and elucidated the involvement of SIRT1 regulation on the ROS/ER stress pathway. Adult rats were subjected to middle cerebral artery occlusion (MCAO) followed by either: (1) resting; (2) mild exercise postconditioning (MPostE); or (3) intense exercise postconditioning (IPostE). PostE was initiated 24 h after reperfusion and performed on a treadmill. At 1 and 3 days thereafter, we determined infarct volumes, neurological defects, brain edema, apoptotic cell death through measuring pro- (BAX and Caspase-3) and anti-apoptotic (Bcl-2) proteins, and ER stress through the measurement of glucose-regulated protein 78 (GRP78), inositol-requiring 1α (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), C/EBP homologous protein (CHOP), Caspase-12, and SIRT1. Proteins were measured by Western blot. ROS production was detected by flow cytometry.Compared to resting rats, both MPostE and IPostE significantly decreased brain infarct volumes and edema, neurological deficits, ROS production, and apoptotic cell death. MPostE further increased Bcl-2 expression and Bcl-2/BAX ratio as well as BAX and Caspase-3 expressions and ROS production (*p < 0.05). Both PostE groups saw decreases in ER stress proteins, while MPostE demonstrated a further reduction in GRP78 (***p < 0.001) and Caspase-12 (*p < 0.05) expressions at 1 day and IRE1α (**p < 0.01) and CHOP (*p < 0.05) expressions at 3 days. Additionally, both PostE groups saw significant increases in SIRT1 expression.In this study, both mild and intense PostE levels induced neuroprotection after stroke through SIRT1 and ROS/ER stress pathway. Additionally, the results may provide a base for our future study regarding the regulation of SIRT1 on the ROS/ER stress pathway in the biochemical processes underlying post-stroke neuroprotection. The results suggest that mild exercise postconditioning might play a similar neuroprotective role as intensive exercise and could be an effective exercise strategy as well.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|