1
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
2
|
Hua W, Xie L, Dong C, Yang G, Chi S, Xu Z, Yang C, Wang H, Wu X. Procyanidin C1 ameliorates acidic pH stress induced nucleus pulposus degeneration through SIRT3/FOXO3-mediated mitochondrial dynamics. J Transl Med 2024; 22:1071. [PMID: 39605029 PMCID: PMC11600718 DOI: 10.1186/s12967-024-05805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common cause of low back pain. Procyanidin C1 (PCC1) has been demonstrated to exert a protective effect on nucleus pulposus (NP) cells, and therefore, plays a critical role in the prevention and therapy of IVDD. Clarifying the pathophysiological characteristics and molecular mechanisms of IVDD may be helpful in establishing novel preventive and therapeutic strategies. This study aimed to investigate the probable mechanisms underlying the protection against acidic pH stress induced human NP cell injury. In vitro, acidic pH stress induced degeneration, mitochondrial dynamics imbalance, mitophagy, and mitochondria-mediated apoptosis in NP cells, all of which were ameliorated by PCC1. Autophagy inhibition partially eliminated the protective effects of PCC1 on mitochondrial homeostasis in NP cells. Moreover, PCC1 activated the sirtuin 3 (SIRT3)/forkhead box O3 (FOXO3) signaling pathway, a pivotal signaling pathway involved in the regulation of mitochondrial homeostasis in NP cells. In vivo, PCC1 ameliorated IVDD in a rat model and preserved the extracellular matrix of NP cells. Consequently, the protective effects of PCC1 on NP cells may inhibit IVDD progression via regulation of the SIRT3/FOXO3 signaling pathway. Therefore, regulation of the SIRT3/FOXO3 signaling pathway may be a novel preventive and therapeutic strategy for IVDD.
Collapse
Affiliation(s)
- Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenpeng Dong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyu Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shouyuan Chi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiqiang Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiwen Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
4
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
5
|
Hu SS, Wang TY, Ni L, Hu FX, Yue BW, Zheng Y, Wang TL, Kumar A, Wang YY, Wang JE, Zhou ZY. Icariin Ameliorates D-galactose-induced Cell Injury in Neuron-like PC12 Cells by Inhibiting MPTP Opening. Curr Med Sci 2024; 44:748-758. [PMID: 38900385 DOI: 10.1007/s11596-024-2892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Icariin (ICA) has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats. Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases. Abnormal opening of the mitochondrial permeability transition pore (mPTP) is a crucial factor in mitochondrial dysfunction and is associated with excessive autophagy. This study aimed to explore that ICA protects against neuronal injury by blocking the mPTP opening and down-regulating autophagy levels in a D-galactose (D-gal)-induced cell injury model. METHODS A cell model of neuronal injury was established in rat pheochromocytoma cells (PC12 cells) treated with 200 mmol/L D-gal for 48 h. In this cell model, PC12 cells were pre-treated with different concentrations of ICA for 24 h. MTT was used to detect cell viability. Senescence associated β-galactosidase (SA-β-Gal) staining was used to observe cell senescence. Western blot analysis was performed to detect the expression levels of a senescence-related protein (p21), autophagy markers (LC3B, p62, Atg7, Atg5 and Beclin 1), mitochondrial fission and fusion-related proteins (Drp1, Mfn2 and Opa1), and mitophagy markers (Pink1 and Parkin). The changes of autophagic flow were detected by using mRFP-GFP-LC3 adenovirus. The intracellular ultrastructure was observed by transmission electron microscopy. Immunofluorescence was used to detect mPTP, mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mtROS) and ROS levels. ROS and apoptosis levels were detected by flow cytometry. RESULTS D-gal treatment significantly decreased the viability of PC12 cells, and markedly increased the SA-β-Gal positive cells as compared to the control group. With the D-gal stimulation, the expression of p21 was significantly up-regulated. Furthermore, D-gal stimulation resulted in an elevated LC3B II/I ratio and decreased p62 expression. Meanwhile, autophagosomes and autolysosomes were significantly increased, indicating abnormal activation of autophagy levels. In addition, in this D-gal-induced model of cell injury, the mPTP was abnormally open, the ROS generation was continuously increased, the MMP was gradually decreased, and the apoptosis was increased. ICA effectively improved mitochondrial dysfunction to protect against D-gal-induced cell injury and apoptosis. It strongly inhibited excessive autophagy by blocking the opening of the mPTP. Cotreatment with ICA and an mPTP inhibitor (cyclosporin A) did not ameliorate mitochondrial dysfunction. However, the protective effects were attenuated by cotreatment with ICA and an mPTP activator (lonidamine). CONCLUSION ICA inhibits the activation of excessive autophagy and thus improves mitochondrial dysfunction by blocking the mPTP opening.
Collapse
Affiliation(s)
- Shan-Shan Hu
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Tong-Yao Wang
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Lu Ni
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Fan-Xin Hu
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Bo-Wen Yue
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Ying Zheng
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Tian-Lun Wang
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Abhishek Kumar
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yan-Yan Wang
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China
| | - Jin-E Wang
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Zhi-Yong Zhou
- Third-grade Pharmacological Laboratory of Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
6
|
Liu L, Wang W, Huang L, Xian Y, Ma W, Fan J, Li Y, Liu H, Zheng Z, Wu D. Injectable pathological microenvironment-responsive anti-inflammatory hydrogels for ameliorating intervertebral disc degeneration. Biomaterials 2024; 306:122509. [PMID: 38377847 DOI: 10.1016/j.biomaterials.2024.122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Chronic local inflammation and resulting cellular dysfunction of nucleus pulposus (NP) cells are important pathogenic factors of intervertebral disc degeneration (IDD). Injectable pathological microenvironment-responsive hydrogels hold significant potential for treating IDD by adapting to dynamic microenvironment of IDD. Herein, we proposed an injectable gelatin-based hydrogel drug delivery system that could respond to the pathological microenvironment of IDD for controlled release of anti-inflammatory drug to promote degenerative NP repair. The hydrogel system was prepared by conjugating phenylboronic acid-modified gelatin methacryloyl (GP) with the naturally extracted anti-inflammatory drug epigallocatechin-3-gallate (EGCG) through dynamic boronic esters. The hydrogel exhibited excellent degradability, injectability, antioxidant properties, anti-inflammatory effects, and biocompatibility. It also displayed responsive-release of EGCG under high reactive oxygen species (ROS) levels and acidic conditions. The hydrogel demonstrated remarkable cytoprotective effects on NP cells in both hyperactive ROS environments and inflammatory cytokine-overexpressed environments in vitro. In vivo studies revealed that the hydrogel injected in situ could effectively ameliorate the intervertebral disc degeneration by maintaining the disc height and NP tissue structure in a rat IDD model. The hydrogel system exhibited excellent biocompatibility and responsive-release of diol-containing drugs in pathological microenvironments, indicating its potential application as a drug delivery platform.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China; Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenzheng Ma
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China; Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China; Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Zhang Y, Liu L, Qi Y, Lou J, Chen Y, Liu C, Li H, Chang X, Hu Z, Li Y, Zhang Y, Feng C, Zhou Y, Zhai Y, Li C. Lactic acid promotes nucleus pulposus cell senescence and corresponding intervertebral disc degeneration via interacting with Akt. Cell Mol Life Sci 2024; 81:24. [PMID: 38212432 PMCID: PMC11071984 DOI: 10.1007/s00018-023-05094-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
The accumulation of metabolites in the intervertebral disc is considered an important cause of intervertebral disc degeneration (IVDD). Lactic acid, which is a metabolite that is produced by cellular anaerobic glycolysis, has been proven to be closely associated with IVDD. However, little is known about the role of lactic acid in nucleus pulposus cells (NPCs) senescence and oxidative stress. The aim of this study was to investigate the effect of lactic acid on NPCs senescence and oxidative stress as well as the underlying mechanism. A puncture-induced disc degeneration (PIDD) model was established in rats. Metabolomics analysis revealed that lactic acid levels were significantly increased in degenerated intervertebral discs. Elimination of excessive lactic acid using a lactate oxidase (LOx)-overexpressing lentivirus alleviated the progression of IVDD. In vitro experiments showed that high concentrations of lactic acid could induce senescence and oxidative stress in NPCs. High-throughput RNA sequencing results and bioinformatic analysis demonstrated that the induction of NPCs senescence and oxidative stress by lactic acid may be related to the PI3K/Akt signaling pathway. Further study verified that high concentrations of lactic acid could induce NPCs senescence and oxidative stress by interacting with Akt and regulating its downstream Akt/p21/p27/cyclin D1 and Akt/Nrf2/HO-1 pathways. Utilizing molecular docking, site-directed mutation and microscale thermophoresis assays, we found that lactic acid could regulate Akt kinase activity by binding to the Lys39 and Leu52 residues in the PH domain of Akt. These results highlight the involvement of lactic acid in NPCs senescence and oxidative stress, and lactic acid may become a novel potential therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
- Department of Orthopedics, General Hospital of Central Theater Command of PLA, Wuhan, 430000, China
| | - Yuhan Qi
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, 100000, China
| | - Jinhui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yuxuan Chen
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yueyang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
8
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
9
|
Ma Z, Yu P, Li X, Dai F, Jiang H, Liu J. Anemonin reduces hydrogen peroxide-induced oxidative stress, inflammation and extracellular matrix degradation in nucleus pulposus cells by regulating NOX4/NF-κB signaling pathway. J Orthop Surg Res 2023; 18:189. [PMID: 36899420 PMCID: PMC10007850 DOI: 10.1186/s13018-023-03679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Excessive oxidative stress plays a critical role in the progression of various diseases, including intervertebral disk degeneration (IVDD). Recent studies have found that anemonin (ANE) possesses antioxidant and anti-inflammatory effects. However, the role of ANE in IVDD is still unclear. Therefore, this study investigated the effect and mechanism of ANE on H2O2 induced degeneration of nucleus pulposus cells (NPCs). METHODS NPCs were pretreated with ANE, and then treated with H2O2. NOX4 was upregulated by transfection of pcDNA-NOX4 into NPCs. Cytotoxicity was detected by MTT, oxidative stress-related indicators and inflammatory factors were measured by ELISA, mRNA expression was assessed by RT-PCR, and protein expression was tested by western blot. RESULTS ANE attenuated H2O2-induced inhibition of NPCs activity. H2O2 enhanced oxidative stress, namely, increased ROS and MDA levels and decreased SOD level. However, these were suppressed and pretreated by ANE. ANE treatment repressed the expression of inflammatory factors (IL-6, IL-1β and TNF-α) in H2O2-induced NPCs. ANE treatment also prevented the degradation of extracellular matrix induced by H2O2, showing the downregulation of MMP-3, 13 and ADAMTS-4, 5 and the upregulation of collagen II. NOX4 is a key factor regulating oxidative stress. Our study confirmed that ANE could restrain NOX4 and p-NF-κB. In addition, overexpression of NOX4 counteracted the antioxidant and anti-inflammatory activities of ANE in H2O2-induced NPCs, and the inhibition of the degradation of extracellular matrix induced by ANE was also reversed by overexpression of NOX4. CONCLUSION ANE repressed oxidative stress, inflammation and extracellular matrix degradation in H2O2-induced NPCs by inhibiting NOX4/NF-κB pathway. Our study indicated that ANE might be a candidate drug for the treatment of IVDD.
Collapse
Affiliation(s)
- Zhijia Ma
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Pengfei Yu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Xiaochun Li
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Feng Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Hong Jiang
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China.
| | - Jintao Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
10
|
An T, Feng X, Li C. Prenylation: A Critical Step for Biomanufacturing of Prenylated Aromatic Natural Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2211-2233. [PMID: 36716399 DOI: 10.1021/acs.jafc.2c07287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Prenylated aromatic natural products (PANPs) have received much attention due to their biomedical benefits for human health. The prenylation of aromatic natural products (ANPs), which is mainly catalyzed by aromatic prenyltransferases (aPTs), contributes significantly to their structural and functional diversity by providing higher lipophilicity and enhanced bioactivity. aPTs are widely distributed in bacteria, fungi, animals, and plants and play a key role in the regiospecific prenylation of ANPs. Recent studies have greatly advanced our understanding of the characteristics and application of aPTs. In this review, we comment on research progress regarding sources, evolutionary relationships, structural features, reaction mechanism, engineering modification, and application of aPTs. Particular emphasis is also placed on recent advances, challenges, and prospects about applications of aPTs in microbial cell factories for producing PANPs. Generally, this review could provide guidance for using aPTs as robust biocatalytic tools to produce various PANPs with high efficiency.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemical Engineering, Key Lab for Industrial Biocatalysis, Ministry of Education, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Yu LM, Dong X, Huang T, Zhao JK, Zhou ZJ, Huang YT, Xu YL, Zhao QS, Wang ZS, Jiang H, Yin ZT, Wang HS. Inhibition of ferroptosis by icariin treatment attenuates excessive ethanol consumption-induced atrial remodeling and susceptibility to atrial fibrillation, role of SIRT1. Apoptosis 2023; 28:607-626. [PMID: 36708428 DOI: 10.1007/s10495-023-01814-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/29/2023]
Abstract
Ferroptosis contributes to the pathogenesis of atrial fibrillation (AF), although the mechanisms are still largely uncovered. The current study was designed to explore the pharmacological effects of icariin against ethanol-induced atrial remodeling, if any, and the mechanisms involved with a focus on SIRT1 signaling. Excessive ethanol-treated animals were administered with Ferrostatin-1, Erastin or icariin to evaluate the potential effects of icariin or ferroptosis. Then, the underling mechanisms was further explored in the in vitro experiments using HL-1 atrial myocytes. Excessive ethanol administration caused significant atrial damage as evidenced by increased susceptibility to AF, altered atrial conduction pattern, atrial enlargement, and enhanced fibrotic markers. These detrimental effects were reversed by Ferrostatin-1 or icariin treatment, while Erastin co-administration markedly abolished the beneficial actions conferred by icariin. Mechanistically, ethanol-treated atria exhibited markedly up-regulated pro-ferroptotic protein (PTGS2, ACSL4, P53) and suppressed anti-ferroptotic molecules (GPX4, FTH1). Icariin treatment inhibited ethanol-induced atrial ferroptosis by reducing atrial mitochondrial damage, ROS accumulation and iron overload. Interestingly, the in vivo and in vitro data showed that icariin activated atrial SIRT1-Nrf-2-HO-1 signaling pathway, while EX527 not only reversed these effects, but also abolished the therapeutic effects of icariin. Moreover, the stimulatory effects on GPX4, SLC7A11 and the suppressive effects on ACSL4, P53 conferred by icariin were blunted by EX527 treatment. These data demonstrate that ferroptosis plays a causative role in the pathogenesis of ethanol-induced atrial remodeling and susceptibility to AF. Icariin protects against atrial damage by inhibiting ferroptosis via SIRT1 signaling. Its role as a prophylactic/therapeutic drug deserves further clinical study.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Xue Dong
- The Third Outpatient Department, General Hospital of Northern Theater Command, 49 Beiling Road, Shenyang, Liaoning, 110032, People's Republic of China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Ji-Kai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Zi-Jun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yu-Ting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yin-Li Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Qiu-Sheng Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Zhi-Shang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Hui Jiang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Zong-Tao Yin
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
12
|
Makinde E, Ma L, Mellick GD, Feng Y. Mitochondrial Modulators: The Defender. Biomolecules 2023; 13:biom13020226. [PMID: 36830595 PMCID: PMC9953029 DOI: 10.3390/biom13020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are widely considered the "power hub" of the cell because of their pivotal roles in energy metabolism and oxidative phosphorylation. However, beyond the production of ATP, which is the major source of chemical energy supply in eukaryotes, mitochondria are also central to calcium homeostasis, reactive oxygen species (ROS) balance, and cell apoptosis. The mitochondria also perform crucial multifaceted roles in biosynthetic pathways, serving as an important source of building blocks for the biosynthesis of fatty acid, cholesterol, amino acid, glucose, and heme. Since mitochondria play multiple vital roles in the cell, it is not surprising that disruption of mitochondrial function has been linked to a myriad of diseases, including neurodegenerative diseases, cancer, and metabolic disorders. In this review, we discuss the key physiological and pathological functions of mitochondria and present bioactive compounds with protective effects on the mitochondria and their mechanisms of action. We highlight promising compounds and existing difficulties limiting the therapeutic use of these compounds and potential solutions. We also provide insights and perspectives into future research windows on mitochondrial modulators.
Collapse
|
13
|
Liu Z, Zhu J, Liu H, Fu C. Natural products can modulate inflammation in intervertebral disc degeneration. Front Pharmacol 2023; 14:1150835. [PMID: 36874009 PMCID: PMC9978229 DOI: 10.3389/fphar.2023.1150835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Intervertebral discs (IVDs) play a crucial role in maintaining normal vertebral anatomy as well as mobile function. Intervertebral disc degeneration (IDD) is a common clinical symptom and is an important cause of low back pain (LBP). IDD is initially considered to be associated with aging and abnormal mechanical loads. However, over recent years, researchers have discovered that IDD is caused by a variety of mechanisms, including persistent inflammation, functional cell loss, accelerated extracellular matrix decomposition, the imbalance of functional components, and genetic metabolic disorders. Of these, inflammation is thought to interact with other mechanisms and is closely associated with the production of pain. Considering the key role of inflammation in IDD, the modulation of inflammation provides us with new options for mitigating the progression of degeneration and may even cause reversal. Many natural substances possess anti-inflammatory functions. Due to the wide availability of such substances, it is important that we screen and identify natural agents that are capable of regulating IVD inflammation. In fact, many studies have demonstrated the potential clinical application of natural substances for the regulation of inflammation in IDD; some of these have been proven to have excellent biosafety. In this review, we summarize the mechanisms and interactions that are responsible for inflammation in IDD and review the application of natural products for the modulation of degenerative disc inflammation.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China.,Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Haiyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Zhang CY, Hu XC, Zhang GZ, Liu MQ, Chen HW, Kang XW. Role of Nrf2 and HO-1 in intervertebral disc degeneration. Connect Tissue Res 2022; 63:559-576. [PMID: 35736364 DOI: 10.1080/03008207.2022.2089565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common age-related disease with clinical manifestations of lumbar and leg pain and limited mobility. The pathogenesis of IDD is mainly mediated by the death of intervertebral disc (IVD) cells and the imbalance of extracellular matrix (ECM) synthesis and degradation. Oxidative stress and inflammatory reactions are the important factors causing this pathological change. Therefore, the regulation of reactive oxygen species and production of inflammatory factors may be an effective strategy to delay the progression of IDD. In recent years, nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream regulated protein heme oxygenase-1 (HO-1) have received special attention due to their antioxidant, anti-inflammatory and anti-apoptotic protective effects. Recent studies have elucidated the important role of these two proteins in the treatment of IDD disease. However, Nrf2 and HO-1 have not been systematically reported in IDD-related diseases. Therefore, this review describes the biological characteristics of Nrf2 and HO-1, the relationship between Nrf2- and HO-1-regulated oxidative stress and the inflammatory response and IDD, and the progress in research on some extracts targeting Nrf2 and HO-1 to improve IDD. Understanding the role and mechanism of Nrf2 and HO-1 in IDD may provide novel ideas for the clinical treatment and development of Nrf2- and HO-1-targeted drugs.
Collapse
Affiliation(s)
- Cang-Yu Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xu-Chang Hu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Guang-Zhi Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Ming-Qiang Liu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Hai-Wei Chen
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xue-Wen Kang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
15
|
Hu J, Li C, Jin S, Ye Y, Fang Y, Xu P, Zhang C. Salvianolic acid B combined with bone marrow mesenchymal stem cells piggybacked on HAMA hydrogel re-transplantation improves intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:950625. [PMID: 36237221 PMCID: PMC9552300 DOI: 10.3389/fbioe.2022.950625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-based tissue engineering approaches have emerged as a realistic alternative for regenerative disc tissue repair. The multidirectional differentiation potential of bone marrow mesenchymal stem cells (BMSCs) to treat disc degeneration intervertebral disc degeneration has also become a viable option. We used 1% HAMA hydrogel as a carrier and co-encapsulated BMSCs and Salvianolic acid B (SalB) into the hydrogel to reduce the apoptosis of the transplanted cells. The protective effect of SalB on BMSCs was first verified in vitro using the CCK8 method, flow cytometry, and Western-Blotting, and the physical properties and biocompatibility of HAMA hydrogels were verified in vitro. The rat model was then established using the pinprick method and taken at 4 and 8 W, to examine the extent of disc degeneration by histology and immunohistochemistry, respectively. It was found that SalB could effectively reduce the apoptosis of BMSCs in vitro by activating the JAK2-STAT3 pathway. 1% HAMA hydrogels had larger pore size and better water retention, and the percentage of cell survival within the hydrogels was significantly higher after the addition of SalB to the HAMA hydrogels. In the in vivo setting, the HAMA + SalB + BMSCs group had a more pronounced delaying effect on the progression of disc degeneration compared to the other treatment groups. The method used in this study to encapsulate protective drugs with stem cells in a hydrogel for injection into the lesion has potential research value in the field of regenerative medicine.
Collapse
Affiliation(s)
- Jie Hu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Cai Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Shichang Jin
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yuchen Ye
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yuekun Fang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
| | - Panpan Xu
- Bengbu Medical College, Bengbu, Anhui, China
| | - Changchun Zhang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Tissue Transplantation in Anhui Province, Bengbu Medical College, Bengbu, Anhui, China
- Bengbu Medical College, Bengbu, Anhui, China
- *Correspondence: Changchun Zhang,
| |
Collapse
|
16
|
Shao Y, Sun L, Yang G, Wang W, Liu X, Du T, Chen F, Jing X, Cui X. Icariin protects vertebral endplate chondrocytes against apoptosis and degeneration via activating Nrf-2/HO-1 pathway. Front Pharmacol 2022; 13:937502. [PMID: 36176424 PMCID: PMC9513224 DOI: 10.3389/fphar.2022.937502] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cartilage endplate (CEP) plays important roles in the onset and progression of intervertebral disc degeneration (IVDD). Icariin (ICA) is the major active ingredient of Herba Epimedii and has various biological activities such as anti-inflammatory and antioxidant, which is used to treat many degenerative diseases. However, the effects and mechanism of ICA on endplate chondrocytes are still unclear. Herein, we studied the effects of ICA on CEP degeneration and elucidated the underlying mechanisms. Endplate chondrocytes were isolated, and TNF-α and TBHP were applied to mimic an IVDD pathological environment. Also, an IVDD mice model was established by transection of bilateral facet joints to investigate the protective effect of ICA in vivo. We found that ICA treatment inhibited the chondrocytes apoptosis and the decrease of extracellular matrix production in a dose-dependent manner. Our in vivo experiments demonstrated that ICA could ameliorate IVDD development and CEP calcification. We also found that the ICA-activated Nrf-2/HO-1 pathway thus promoted the Parkin-mediated mitophagy process and inhibited chondrocytes ferroptosis, thus alleviated redox imbalance and mitochondrial dysfunction and eventually improved cell survival. Knockdown of Nrf-2 using siRNA reversed the protective effect of ICA on endplate chondrocytes apoptosis and degeneration. In conclusion, our study demonstrated that ICA could protect against CEP degeneration and calcification under IVDD pathological conditions, the associated mechanism may be related to Nrf-2/HO-1-mediated mitophagy activation and ferroptosis inhibition. Our results suggest that ICA may be a potential effective medicine for IVDD prevention and treatment.
Collapse
Affiliation(s)
- Yuandong Shao
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Spine Surgery, Binzhou People’s Hospital, Binzhou, China
| | - Lei Sun
- Department of Spine Surgery, Binzhou People’s Hospital, Binzhou, China
| | - Guihe Yang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Wenchao Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ting Du
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Feifei Chen
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Xingang Cui,
| |
Collapse
|
17
|
The Nrf2 antioxidant defense system in intervertebral disc degeneration: Molecular insights. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1067-1075. [PMID: 35978054 PMCID: PMC9440120 DOI: 10.1038/s12276-022-00829-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common degenerative musculoskeletal disorder and is recognized as a major contributor to discogenic lower back pain. However, the molecular mechanisms underlying IDD remain unclear, and therapeutic strategies for IDD are currently limited. Oxidative stress plays pivotal roles in the pathogenesis and progression of many age-related diseases in humans, including IDD. Nuclear factor E2-related factor 2 (Nrf2) is a master antioxidant transcription factor that protects cells against oxidative stress damage. Nrf2 is negatively modulated by Kelch-like ECH-associated protein 1 (Keap1) and exerts important effects on IDD progression. Accumulating evidence has revealed that Nrf2 can facilitate the transcription of downstream antioxidant genes in disc cells by binding to antioxidant response elements (AREs) in promoter regions, including heme oxygenase-1 (HO-1), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and NADPH quinone dehydrogenase 1 (NQO1). The Nrf2 antioxidant defense system regulates cell apoptosis, senescence, extracellular matrix (ECM) metabolism, the inflammatory response of the nucleus pulposus (NP), and calcification of the cartilaginous endplates (EP) in IDD. In this review, we aim to discuss the current knowledge on the roles of Nrf2 in IDD systematically. Insights into the activity of a protein that regulates gene expression and protects cells against oxidative stress could yield novel treatments for lower back pain. Intervertebral disc degeneration (IDD) is a common cause of lower back pain, but the molecular mechanisms underlying IDD are unclear, meaning treatment options are limited. Oxidative stress is implicated in IDD, and scientists have begun exploring the role of nuclear factor E2-related factor 2 (Nrf2), a master regulator of the body’s antioxidant responses, in regulating IDD progression. In a review of recent research, Weishi Li at Peking University Third Hospital, Beijing, China, and co-workers point out that boosting the activity of Nrf2-related signaling pathways alleviates oxidative stress in intervertebral disc cells. The researchers suggest that therapies based on non-coding RNAs may prove valuable in activating Nrf2 in IDD patients.
Collapse
|
18
|
Cheng Y, Yang H, Hai Y, Zhou L. Scientific literature landscape analysis of researches on oxidative stress in intervertebral disc degeneration in web of science. Front Mol Biosci 2022; 9:989627. [PMID: 36032668 PMCID: PMC9403418 DOI: 10.3389/fmolb.2022.989627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress plays a significant role in the development of disc degeneration and has attracted widespread attention since it was first researched in 2007. Our study aims to analyze the scientific output of oxidative stress in intervertebral disc degeneration (IDD) and drive future research into new publications. Publications focused on this topic were retrieved from the SCI-EXPANDED (SCI-E) of the Web of Science (WOS) core collection database and were screened according to the inclusion criteria. Bibliometric website, VOSviewer, and Citespace software were used to evaluate and visualize the results, including annual publications, citations, authors, organizations, countries, research directions, funds, and journals. As of 16 February 2022, a total of 289 original articles and reviews were included, and the overall trend of the number of publications rapidly increased. China and the United States were the leading countries for research production in worldwide. The retrieved 289 publications received 5,979 citations, with an average of 20.67 citations and an H-index of 40. The most high-yield author, organization, country, research direction, fund, and journal were Wang K from Tongji Medical College, Huazhong University of Science Technology, China, Cell Biology, National Natural Science Foundation of China, Oxidative Medicine and Cellular Longevity, respectively. The majority of most common keywords were related to the mechanisms and regulatory networks of oxidative stress. Furthermore, with accumulating evidence that demonstrates the role of oxidative stress in IDD, “mitochondria” and “senescence” are becoming the new research focus that should be paid more attention to.
Collapse
Affiliation(s)
| | | | - Yong Hai
- *Correspondence: Yong Hai, ; Lijin Zhou,
| | - Lijin Zhou
- *Correspondence: Yong Hai, ; Lijin Zhou,
| |
Collapse
|
19
|
Molecular mechanisms regulating the pharmacological actions of icariin with special focus on PI3K-AKT and Nrf-2 signaling pathways. Mol Biol Rep 2022; 49:9023-9032. [PMID: 35941411 DOI: 10.1007/s11033-022-07778-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 10/15/2022]
Abstract
Icariin is a primary active component of the traditional Chinese medicinal plant Epimedium grandiflorum. A range of pharmacological effects of icariin has been researched by modern science to explain its traditional medicinal uses. Attributing to the wide range of pharmacological properties like anti-osteoporosis, anti-inflammation, anti-oxidative stress, anti-depression, and anti-tumor property possessed by icariin, it is now being considered a potential therapeutic agent for a wide variety of disorders ranging from neoplasm, neurodegenerative disorders, osteoporosis, and cardiovascular diseases. Various signaling pathways including NFκB/NALP3, IGF-1, MiR-223-3p/ NALP3, TLR4/ NFκB, and WNT1/β-catenin are involved in the different biological actions exerted by icariin. Apart from these pathways, PI3K-AKT (Phosphoinositide 3 kinase-Protein kinase B) and Nrf-2 (nuclear erythroid 2-related factor 2) signaling pathways are two important pathways that form the fundamental basis for the pharmaceutical efficacy of icariin. This review gives an overview of previous in vitro and in vivo studies that investigated the potential role of icariin via PI3K-AKT and Nrf-2 signaling pathways to provide greater insights into its potential clinical use in a variety of disorders.
Collapse
|
20
|
Zhang YY, Hu ZL, Qi YH, Li HY, Chang X, Gao XX, Liu CH, Li YY, Lou JH, Zhai Y, Li CQ. Pretreatment of nucleus pulposus mesenchymal stem cells with appropriate concentration of H 2O 2 enhances their ability to treat intervertebral disc degeneration. Stem Cell Res Ther 2022; 13:340. [PMID: 35883157 PMCID: PMC9327256 DOI: 10.1186/s13287-022-03031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Nucleus pulposus mesenchymal stem cells (NPMSCs) transplantation is a promising treatment for intervertebral disc degeneration (IVDD). However, the transplanted NPMSCs exhibited weak cell proliferation, high cell apoptosis, and a low ability to resist the harsh microenvironment of the degenerated intervertebral disc. There is an urgent need to explore feasible methods to enhance the therapeutic efficacy of NPMSCs transplantation. Objective To identify the optimal concentration for NPMSCs pretreatment with hydrogen peroxide (H2O2) and explore the therapeutic efficacy of NPMSCs transplantation using H2O2 pretreatment in IVDD. Methods Rat NPMSCs were pretreated with different concentrations (range from 25 to 300 μM) of H2O2. The proliferation, reactive oxygen species (ROS) level, and apoptosis of NPMSCs were detected by cell counting kit-8 (CCK-8) assay, 5-ethynyl-2′-deoxyuridine (EdU) staining, and flow cytometry in vitro. The underlying signalling pathways were explored utilizing Western blotting. A rat needle puncture-stimulated IVDD model was established. X-ray, histological staining, and a multimode small animal live imaging system were used to evaluate the therapeutic effect of H2O2-pretreated NPMSCs in vivo. Results NPMSCs pretreated with 75 μM H2O2 demonstrated the strongest elevated cell proliferation by inhibiting the Hippo pathway (P < 0.01). Meanwhile, 75 μM H2O2-pretreated NPMSCs exhibited significantly enhanced antioxidative stress ability (P < 0.01), which is related to downregulated Brd4 and Keap1 and upregulated Nrf2. NPMSCs pretreated with 75 μM H2O2 also exhibited distinctly decreased apoptosis (P < 0.01). In vivo experiments verified that 75 μM H2O2-pretreated NPMSCs-transplanted rats exhibited an enhanced disc height index (DHI% = 90.00 ± 4.55, P < 0.01) and better histological morphology (histological score = 13.5 ± 0.5, P < 0.01), which means 75 μM H2O2-pretreated NPMSCs can better adapt to the environment of degenerative intervertebral discs and promote the repair of IVDD. Conclusions Pretreatment with 75 μM H2O2 was the optimal concentration to improve the proliferation, antioxidative stress, and antiapoptotic ability of transplanted NPMSCs, which is expected to provide a new feasible method to improve the stem cell therapy efficacy of IVDD. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03031-7.
Collapse
Affiliation(s)
- Yu-Yao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zhi-Lei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yu-Han Qi
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, 100000, China
| | - Hai-Yin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xiao-Xin Gao
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chen-Hao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yue-Yang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jin-Hui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
| | - Chang-Qing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
21
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|
22
|
Costăchescu B, Niculescu AG, Teleanu RI, Iliescu BF, Rădulescu M, Grumezescu AM, Dabija MG. Recent Advances in Managing Spinal Intervertebral Discs Degeneration. Int J Mol Sci 2022; 23:6460. [PMID: 35742903 PMCID: PMC9223374 DOI: 10.3390/ijms23126460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) represents a frequent and debilitating condition affecting a large part of the global population and posing a worldwide health and economic burden. The major cause of LBP is intervertebral disc degeneration (IDD), a complex disease that can further aggravate and give rise to severe spine problems. As most of the current treatments for IDD either only alleviate the associated symptoms or expose patients to the risk of intraoperative and postoperative complications, there is a pressing need to develop better therapeutic strategies. In this respect, the present paper first describes the pathogenesis and etiology of IDD to set the framework for what has to be combated to restore the normal state of intervertebral discs (IVDs), then further elaborates on the recent advances in managing IDD. Specifically, there are reviewed bioactive compounds and growth factors that have shown promising potential against underlying factors of IDD, cell-based therapies for IVD regeneration, biomimetic artificial IVDs, and several other emerging IDD therapeutic options (e.g., exosomes, RNA approaches, and artificial intelligence).
Collapse
Affiliation(s)
- Bogdan Costăchescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
| | - Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania;
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Florin Iliescu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Marius Gabriel Dabija
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (B.C.); (B.F.I.); (M.G.D.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
23
|
Wang DK, Zheng HL, Zhou WS, Duan ZW, Jiang SD, Li B, Zheng XF, Jiang LS. Mitochondrial Dysfunction in Oxidative Stress-Mediated Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1569-1582. [PMID: 35673928 PMCID: PMC9363752 DOI: 10.1111/os.13302] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the most common contributor to low back pain (LBP). Recent studies have found that oxidative stress and reactive oxygen species (ROS) play an important role in IVDD. As a by‐product of aerobic respiration, ROS is mainly produced in the mitochondria by the electron transport chain and other mitochondrial located proteins. With the excessive accumulation of ROS, mitochondria are also the primary target of ROS attack in disc cells. A disrupted balance between intracellular ROS production and antioxidant capacity will lead to oxidative stress, which is the key contributor to cell apoptosis, cell senescence, excessive autophagy, and mitochondrial dysfunction. As the pivotal ingredient of oxidative stress, mitochondrial dysfunction manifests as imbalanced mitochondrial dynamics and dysregulated mitophagy. Mitochondria can alter their own dynamics through the process of fusion and fission, so that disabled mitochondria can be separated from the mitochondrial pool. Moreover, mitophagy participates by clearing these dysfunctional mitochondria. Abnormality in any of these processes either increases the production or decreases the clearance of ROS, leading to a vicious cycle that results in the death of intervertebral disc cells in large quantities, combined with degradation of the extracellular matrix and overproduction of matrix metalloproteinase. In this review, we explain the changes in mitochondrial morphology and function during oxidative stress‐mediated IVDD and highlight the important role of mitochondria in this process. Eventually, we summarize the IVDD therapeutic strategies targeting mitochondrial dysfunction based on current understanding of the role of oxidative stress in IVDD.
Collapse
Affiliation(s)
- Dian-Kai Wang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huo-Liang Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Sheng Zhou
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Wei Duan
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dan Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Luo Z, Dong J, Wu J. Impact of Icariin and its derivatives on inflammatory diseases and relevant signaling pathways. Int Immunopharmacol 2022; 108:108861. [PMID: 35597118 DOI: 10.1016/j.intimp.2022.108861] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
Herba Epimedii is a famous herb collected from China and Korea. It has been used for impotency, osteoporosis, and amnestic treatment for thousands of years. Icariin, a typical flavonoid compound isolated from Herba Epimedii, was reported as a potential anti-inflammatory drug. Icariside and icaritin are the two metabolites of icariin. Icariin and its metabolites have been used to treat a wide range of inflammatory diseases, such as atherosclerosis, Alzheimer's disease, depression, osteoarthritis, and asthma. They exert powerful suppression of proinflammatory signaling, such as NF-κB and MAPKs. More importantly, they can upregulate anti-inflammatory signaling, such as GR and Nrf2. In this study, we review the therapeutic effects and mechanisms of icariin and its metabolites in inflammatory diseases and provide novel insights into these potential anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhuyu Luo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
25
|
Selenium Attenuates TBHP-Induced Apoptosis of Nucleus Pulposus Cells by Suppressing Mitochondrial Fission through Activating Nuclear Factor Erythroid 2-Related Factor 2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7531788. [PMID: 35450408 PMCID: PMC9017574 DOI: 10.1155/2022/7531788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Intervertebral disc (IVD) degeneration (IDD), the leading cause of low back pain (LBP), remains intractable due to a lack of effective therapeutic strategies. Several lines of studies have documented that nucleus pulposus cell (NPC) death induced by excessive oxidative stress is a crucial contributor to IDD. However, the concrete role and regulation mechanisms have not been fully clarified. Selenium (Se), a vital prosthetic group of antioxidant enzymes, is indispensable for maintaining redox homeostasis and promoting cell survival. However, no light was shed on the role of Se on IDD progression, especially regulation on mitochondrial dynamics and homeostasis. To fill this research gap, the current study focuses on the effects of Se, including sodium selenite (SS) and selenomethionine (Se-Met), on IDD progression and the underlying mechanisms. In vitro, we found that both SS and Se-Met alleviated tert-butyl hydroperoxide- (TBHP-) induced oxidative stress, protected mitochondrial function, and inhibited apoptosis of NPCs. Further experiments indicated that Se suppressed TBHP-induced mitochondrial fission and rescued the imbalance of mitochondrial dynamics. Promoting mitochondrial fission by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) partially counteracted the cytoprotective effects of Se. Moreover, blocking nuclear factor erythroid 2-related factor 2 (Nrf2) with ML385 proved that the effect of Se on regulating mitochondrial dynamics was attributed to the activation of the Nrf2 pathway. In the puncture-induced rat IDD model, a supplement of Se-Met ameliorated degenerative manifestations. Taken together, our results demonstrated that Se suppressed TBHP-induced oxidative stress and mitochondrial fission by activating the Nrf2 pathway, thereby inhibiting the apoptosis of NPCs and ameliorating IDD. Regulation of mitochondrial dynamics by Se may have a potential application value in attenuating the pathological process of IDD.
Collapse
|
26
|
Zhang Z, Qin F, Feng Y, Zhang S, Xie C, Huang H, Sang C, Hu S, Jiao F, Jiang J, Qin Y. Icariin regulates stem cell migration for endogenous repair of intervertebral disc degeneration by increasing the expression of chemotactic cytokines. BMC Complement Med Ther 2022; 22:63. [PMID: 35272637 PMCID: PMC8915518 DOI: 10.1186/s12906-022-03544-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Icariin (ICA) can promote the migration and bone formation of bone marrow mesenchymal stem cells. This study explored a potential role of ICA in recruiting stem cell niches (SCNs) within the intervertebral disc region (ISN)-derived stem cells (ISN-SCs) to treat intervertebral disc degeneration (IVDD). Materials and methods EdU staining, transwell, and wound healing tests were used to analyze the function of ICA on ISN-SCs proliferation and migration ability. Simultaneously, the IVDD rat model was constructed by the acupuncture and divided into Sham, Sham + ICA, IVDD, and IVDD + ICA groups. H&E and PAS staining were performed to detect the pathological changes of IVDD tissues. Immunofluorescence was performed to discover relevant marker expression on the surface of stem cells in the IVDD tissues. Western blot and qPCR were executed to find the protein and mRNA expression of related cytokines in the IVDD tissues. Results ISN-SCs treated with 1 μM ICA obtained the better ability of proliferation and migration. H&E staining showed that the annulus fibrosus in the IVDD group was obviously hyperplasia with cavities and fissures; the nucleus pulposus was reduced. PAS staining showed that the content of polysaccharides was significantly reduced in the nucleus pulposus of IVDD group. However, the ICA treatment alleviated the pathological trends of the IVDD tissues. Simultaneously, ICA treatment increased significantly the expression of stem cells and IGF-1, TGF-β, SDF-1, CCL-5, Collagen I, Collagen II, Aggrecan, and SOX9 in IVDD tissues. Conclusions ICA treatment promoted the migration of stem cell in IVDD by increasing the expression of chemotactic cytokines, including IGF-1, TGF-β, SDF-1, and CCL-5. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03544-x.
Collapse
Affiliation(s)
- Zhaofei Zhang
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China. .,Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China.
| | - Fengwei Qin
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Yonghui Feng
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Sineng Zhang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Chunliang Xie
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - He Huang
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Chaohui Sang
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China
| | - Shaoyu Hu
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Jiao
- Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, People's Republic of China
| | - Jie Jiang
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yi Qin
- Department of Spine and Orthopedics, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Kou Z, Wang C, Gao L, Chu G, Yang G, Pang W. Icariin improves pig sperm quality through antioxidant and antibacterial effects during liquid storage at 17 °C. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Chen Z, Zhao C, Liu P, Huang H, Zhang S, Wang X. Anti-Apoptosis and Autophagy Effects of Melatonin Protect Rat Chondrocytes against Oxidative Stress via Regulation of AMPK/Foxo3 Pathways. Cartilage 2021; 13:1041S-1053S. [PMID: 34775836 PMCID: PMC8804746 DOI: 10.1177/19476035211038748] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Emerging evidence has indicated that excessive reactive oxygen species (ROS) have detrimental effects on osteoarthritis (OA). This study aimed to elucidate the effects of melatonin (MT), an antioxidant indolamine secreted from the pineal gland, on chondrocyte senescence and cartilage degeneration, thereby clarifying the underlying mechanisms of ROS-induced OA pathogenesis. DESIGN Hydrogen peroxide (H2O2) was used to induce oxidative stress in rat chondrocytes. ROS levels were evaluated using cytometry and immunofluorescence. Cell viability was detected using the Cell Counting Kit-8 (CCK-8) assay. Western blotting and qPCR (Quantiative Real-Time Polymerase Chain Reaction) were used to examine apoptosis and autophagy. For in vivo experiments, male Sprague-Dawley rats were randomly divided into a sham-operated group, DMM (destabilization of the medial meniscus) surgery group, and surgery groups that received melatonin. Knee joints were collected and stained for histological analysis. RESULTS The data demonstrated that melatonin treatment significantly suppressed H2O2-induced matrix degradation and apoptosis, and maintained mitochondrial redox homeostasis. In addition, an enhancement of autophagic flux was observed through western blotting. These findings corresponded with activation of the AMPK/Foxo3 signaling pathways upon melatonin treatment. Histological staining and transmission electron microscopy (TEM) micrographs also demonstrated that melatonin alleviated cartilage ossification and chondrocyte hypertrophy in vivo. CONCLUSIONS Our results indicated that melatonin protected chondrocytes via mitochondrial redox homeostasis and autophagy. The effects of melatonin on senescence may apply to other age-related diseases. Thus, melatonin may have multiple potential therapeutic applications.
Collapse
Affiliation(s)
- Zhaoxun Chen
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Chen Zhao
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Pengcheng Liu
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Haohan Huang
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China,Xiaoqing Wang, Shanghai Key Laboratory of
Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s
Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhizaoju
Road, Shanghai 200011, People’s Republic of China.
| | - Xiaoqing Wang
- Shanghai Key Laboratory of Orthopaedic
Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of
China,Shuhong Zhang, Shanghai Key Laboratory of
Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s
Hospital, Shanghai Jiaotong University School of Medicine, No. 639, Zhizaoju
Road, Shanghai 200011, People’s Republic of China.
| |
Collapse
|
29
|
The REDD1/TXNIP Complex Accelerates Oxidative Stress-Induced Apoptosis of Nucleus Pulposus Cells through the Mitochondrial Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7397516. [PMID: 34603601 PMCID: PMC8481043 DOI: 10.1155/2021/7397516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/07/2021] [Indexed: 01/19/2023]
Abstract
The death of nucleus pulposus (NP) cells is an important cause of intervertebral disc (IVD) degeneration. Redox disturbance caused by dysfunctional mitochondria has been considered as a vital risk for NP cell survival. It is valuable to identify key proteins maintaining mitochondrial function in NP cells. A previous study found that regulated in development and DNA damage response 1 (REDD1) are upregulated during intervertebral disc degeneration and that REDD1 can cause NP cell apoptosis. Thus, the present study further explores the effect of REDD1 on IVD degeneration. Our results showed that REDD1 promotes NP cell apoptosis via the mitochondrial pathway. Importantly, REDD1 formed a complex with TXNIP to strengthen its own action, and the combination was consolidated under H2O2-induced oxidative stress. The combined inhibition of the REDD1/TXNIP complex was better than that of REDD1 or TXNIP alone in restoring cell proliferation and accelerating apoptosis. Moreover, p53 acts as the transcription factor of REDD1 to regulate the REDD1/TXNIP complex under oxidative stress. Altogether, our results demonstrated that the REDD1/TXNIP complex mediated H2O2-induced human NP cell apoptosis and IVD degeneration through the mitochondrial pathway. Interferences on these sites to achieve mitochondrial redox homeostasis may be a novel therapeutic strategy for oxidative stress-associated IVD degeneration.
Collapse
|
30
|
Natural Products of Pharmacology and Mechanisms in Nucleus Pulposus Cells and Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9963677. [PMID: 34394398 PMCID: PMC8357477 DOI: 10.1155/2021/9963677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain (LBP), which severely reduces the quality of life and imposes a heavy financial burden on the families of affected individuals. Current research suggests that IDD is a complex cell-mediated process. Inflammation, oxidative stress, mitochondrial dysfunction, abnormal mechanical load, telomere shortening, DNA damage, and nutrient deprivation contribute to intervertebral disc cell senescence and changes in matrix metabolism, ultimately causing IDD. Natural products are widespread, structurally diverse, afford unique advantages, and exhibit great potential in terms of IDD treatment. In recent years, increasing numbers of natural ingredients have been shown to inhibit the degeneration of nucleus pulposus cells through various modes of action. Here, we review the pharmacological effects of natural products on nucleus pulposus cells and the mechanisms involved. An improved understanding of how natural products target signalling pathways will aid the development of anti-IDD drugs. This review focuses on potential IDD drugs.
Collapse
|
31
|
Jia Z, Wang K, Zhang Y, Duan Y, Xiao K, Liu S, Ding X. Icariin Ameliorates Diabetic Renal Tubulointerstitial Fibrosis by Restoring Autophagy via Regulation of the miR-192-5p/GLP-1R Pathway. Front Pharmacol 2021; 12:720387. [PMID: 34349660 PMCID: PMC8326523 DOI: 10.3389/fphar.2021.720387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
Tubulointerstitial fibrosis is one of the most common pathological features of diabetic nephropathy. Autophagy, an intracellular mechanism to remove damaged or dysfunctional cell parts and maintain metabolic homeostasis, is inhibited in diabetic neuropathy. Icariin is a traditional Chinese medicine extract known for nourishing the kidney and reinforcing Yang. In this study, we investigated the effects and mechanism of Icariin on renal function, autophagy, and fibrosis in type 2 diabetic nephropathic rats and in high-glucose-incubated human renal tubular epithelial cells and rat renal fibroblasts (in vitro). Icariin improved diabetes, renal function, restored autophagy, and alleviated fibrosis in type 2 diabetic neuropathic rats and in vitro. After we applied autophagy-related gene 5-small interfering RNA, we found that fibrosis improvement by Icariin was related to autophagy restoration. By detecting serum sex hormone levels, and using dihydrotestosterone, siRNA for androgen receptor, and the androgen receptor antagonist Apalutamide (ARN-509), we found that Icariin had an androgen-like effect and restored autophagy and reduced fibrosis by regulating the androgen receptor. In addition, miR-192-5p levels were increased under high glucose but reduced after dihydrotestosterone and Icariin treatment. Furthermore, dihydrotestosterone and Icariin inhibited miR-192-5p overexpression-induced fibrosis production and autophagy limitation. Glucagon-like peptide-1 receptor (GLP-1R) was downregulated by high glucose and overexpression of miR-192-5p and could be restored by dihydrotestosterone and Icariin. By using ARN-509, we found that Icariin increased GLP-1R expression by regulating the androgen receptor. GLP-1R-siRNA transfection weakened the effects of Icariin on autophagy and fibrosis. These findings indicate that Icariin alleviates tubulointerstitial fibrosis by restoring autophagy through the miR-192-5p/GLP-1R pathway and is a novel therapeutic option for diabetic fibrosis.
Collapse
Affiliation(s)
- Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kaiwei Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yameng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yalei Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuo Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Mitochondrial quality control in intervertebral disc degeneration. Exp Mol Med 2021; 53:1124-1133. [PMID: 34272472 PMCID: PMC8333068 DOI: 10.1038/s12276-021-00650-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a common and early-onset pathogenesis in the human lifespan that can increase the risk of low back pain. More clarification of the molecular mechanisms associated with the onset and progression of IDD is likely to help establish novel preventive and therapeutic strategies. Recently, mitochondria have been increasingly recognized as participants in regulating glycolytic metabolism, which has historically been regarded as the main metabolic pathway in intervertebral discs due to their avascular properties. Indeed, mitochondrial structural and functional disruption has been observed in degenerated nucleus pulposus (NP) cells and intervertebral discs. Multilevel and well-orchestrated strategies, namely, mitochondrial quality control (MQC), are involved in the maintenance of mitochondrial integrity, mitochondrial proteostasis, the mitochondrial antioxidant system, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Here, we address the key evidence and current knowledge of the role of mitochondrial function in the IDD process and consider how MQC strategies contribute to the protective and detrimental properties of mitochondria in NP cell function. The relevant potential therapeutic treatments targeting MQC for IDD intervention are also summarized. Further clarification of the functional and synergistic mechanisms among MQC mechanisms may provide useful clues for use in developing novel IDD treatments.
Collapse
|
33
|
Mangiferin Alleviates Mitochondrial ROS in Nucleus Pulposus Cells and Protects against Intervertebral Disc Degeneration via Suppression of NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6632786. [PMID: 34234886 PMCID: PMC8216826 DOI: 10.1155/2021/6632786] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 01/07/2023]
Abstract
Intervertebral disc degeneration (IVDD), one of the most common clinical diseases worldwide, causes disc herniation and sciatica. Recent studies have identified the involvement of mitochondrial dysfunction, inflammatory responses, and extracellular matrix degradation in IVDD. Mangiferin is known to protect against various diseases by inhibiting oxidative stress, suppressing inflammation reaction, and relieving mitochondrial dysfunction. Whether mangiferin can alleviate IVDD remains to be elucidated. In the present study, human nucleus pulposus cells (HNPCs) and mouse intervertebral discs were cultured and stimulated with TNF-α, with or without treatment of mangiferin. Moreover, we established a rat needle puncture model and injected mangiferin into the intervertebral discs to verify its protective effect on IVDD. Furthermore, the activity of the NF-κB signaling pathway was tested in vitro. Our results indicated that mangiferin alleviated the inflammatory response and reversed the loss of major intervertebral disc components. Besides, mangiferin reduced reactive oxygen species production, ameliorated mitochondrial damage, and decreased the expression of apoptosis-related parameters in stimulation of TNF-α. In addition, mangiferin antagonized the activation of the NF-κB signaling pathway induced by TNF-α. Collectively, mangiferin antagonized mitochondrial ROS in NP cells and protected against IVDD by suppressing the activation of the NF-κB signaling pathway, which might provide a potential therapeutic instrument for IVDD.
Collapse
|
34
|
Targeting mitochondrial dysfunction with small molecules in intervertebral disc aging and degeneration. GeroScience 2021; 43:517-537. [PMID: 33634362 PMCID: PMC8110620 DOI: 10.1007/s11357-021-00341-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
The prevalence of rheumatic and musculoskeletal diseases (RMDs) including osteoarthritis (OA) and low back pain (LBP) in aging societies present significant cost burdens to health and social care systems. Intervertebral disc (IVD) degeneration, which is characterized by disc dehydration, anatomical alterations, and extensive changes in extracellular matrix (ECM) composition, is an important contributor to LBP. IVD cell homeostasis can be disrupted by mitochondrial dysfunction. Mitochondria are the main source of energy supply in IVD cells and a major contributor to the production of reactive oxygen species (ROS). Therefore, mitochondria represent a double-edged sword in IVD cells. Mitochondrial dysfunction results in oxidative stress, cell death, and premature cell senescence, which are all implicated in IVD degeneration. Considering the importance of optimal mitochondrial function for the preservation of IVD cell homeostasis, extensive studies have been done in recent years to evaluate the efficacy of small molecules targeting mitochondrial dysfunction. In this article, we review the pathogenesis of mitochondrial dysfunction, aiming to highlight the role of small molecules and a selected number of biological growth factors that regulate mitochondrial function and maintain IVD cell homeostasis. Furthermore, molecules that target mitochondria and their mechanisms of action and potential for IVD regeneration are identified. Finally, we discuss mitophagy as a key mediator of many cellular events and the small molecules regulating its function.
Collapse
|
35
|
Transcriptional Profiling Uncovers Biologically Significant RNAs and Regulatory Networks in Nucleus Pulposus from Intervertebral Disc Degeneration Patients. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6696335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. This study aimed to uncover biologically significant RNAs in nucleus pulposus tissues of human intervertebral disc degeneration (IVDD) by integrated transcriptional profiling. Methods. From the Gene Expression Omnibus (GEO) database, three IVDD-related microarray profiling datasets were retrieved and assessed by intragroup data repeatability test. Then, differentially expressed circRNAs, lncRNAs, mRNAs, and miRNAs were screened in nucleus pulposus tissues between IVDD and control samples via the limma package. Coexpression networks were separately conducted via weighted gene correlation network analysis (WGCNA). Based on the feature RNAs in the IVDD-related modules, IVDD-related circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA networks were conducted. The differentially expressed mRNAs in the two networks were analyzed by protein-protein interaction (PPI) and functional enrichment analyses. Results. By the intragroup data repeatability test, outlier samples were removed. Abnormally expressed RNAs were separately identified in nucleus pulposus between IVDD and controls. Via WGCNA, IVDD-related coexpression modules were constructed and the feature circRNAs, lncRNAs, mRNAs, and miRNAs were identified. Then, the circRNA- and lncRNA-miRNA-mRNA networks were built for IVDD. These mRNAs in the network exhibited complex interactions. Moreover, they were involved in distinct IVDD-related biological processes and pathways such as transcription, cell proliferation, TNF, TGF-β, and HIF signaling pathways. Conclusion. This study revealed biologically significant noncoding RNAs and their complex regulatory networks for IVDD.
Collapse
|
36
|
Kamali A, Ziadlou R, Lang G, Pfannkuche J, Cui S, Li Z, Richards RG, Alini M, Grad S. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics 2021; 11:27-47. [PMID: 33391459 PMCID: PMC7681102 DOI: 10.7150/thno.48987] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) is a major reason for disability, and symptomatic intervertebral disc (IVD) degeneration (IDD) contributes to roughly 40% of all LBP cases. Current treatment modalities for IDD include conservative and surgical strategies. Unfortunately, there is a significant number of patients in which conventional therapies fail with the result that these patients remain suffering from chronic pain and disability. Furthermore, none of the current therapies successfully address the underlying biological problem - the symptomatic degenerated disc. Both spinal fusion as well as total disc replacement devices reduce spinal motion and are associated with adjacent segment disease. Thus, there is an unmet need for novel and stage-adjusted therapies to combat IDD. Several new treatment options aiming to regenerate the IVD are currently under investigation. The most common approaches include tissue engineering, growth factor therapy, gene therapy, and cell-based treatments according to the stage of degeneration. Recently, the regenerative activity of small molecules (low molecular weight organic compounds with less than 900 daltons) on IDD was demonstrated. However, small molecule-based therapy in IDD is still in its infancy due to limited knowledge about the mechanisms that control different cell signaling pathways of IVD homeostasis. Small molecules can act as anti-inflammatory, anti-apoptotic, anti-oxidative, and anabolic agents, which can prevent further degeneration of disc cells and enhance their regeneration. This review pursues to give a comprehensive overview of small molecules, focusing on low molecular weight organic compounds, and their potential utilization in patients with IDD based on recent in vitro, in vivo, and pre-clinical studies.
Collapse
Affiliation(s)
- Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, Davos, Switzerland
- Department of Biomedical Engineering, Medical Faculty of the University of Basel, Basel, CH
| | - Gernot Lang
- Department of Orthopaedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland
- The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
37
|
Zhu L, Yu C, Zhang X, Yu Z, Zhan F, Yu X, Wang S, He F, Han Y, Zhao H. The treatment of intervertebral disc degeneration using Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113117. [PMID: 32738389 DOI: 10.1016/j.jep.2020.113117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Intervertebral disc degeneration (IDD) is one of the most common causes of chronic low back pain that spending a lot of workforces and financial resources, seriously affecting human physical and mental health. Clinically used drug treatments and surgical treatments cannot fundamentally relieve the disease and have a risk of recurrence. Traditional Chinese Medicine (TCM) has a history of more than a thousand years in the prevention and treatment of IDD. However, so far, there are few reviews on the treatment of IDD by TCM. Therefore, it is crucial and necessary to systematically mine the existing literature on the treatment of IDD with TCM. This paper strives to systematically describe the modern medicine and TCM theoretical research on IDD, progress in the treatment of IDD and focuses on the treatment of IDD by TCM, which would lay some theoretical foundation and provide new directions for future research. MATERIALS AND METHODS Information on clinical observations, animal experiments and relevant pharmacology data about the treatment of IDD were gathered from various sources including traditional Chinese books and Chinese Pharmacopoeia, scientific databases (Elsevier, PubMed, Science Direct, Baidu Scholar, CNKI, Spring Link, Web of Science) and from different professional websites. RESULTS This review mainly introduces the current research on the theoretical research on IDD, the combination principle of the TCM formula, and the underlying mechanism of the formula and active ingredients. CONCLUSIONS At present, domestic and foreign scholars have carried out a lot of research in different ways, such as the molecular mechanism and predisposing factors of IDD, which provides theoretical development and clinical practice significance for future research. TCM, as a multi-component and multi-targeted drug, can produce synergistic effects to exert its efficacy. Therefore, the development of TCM with more specific functions and practical data will not only become a significant trend in the world market but also has an irreplaceable role in the future treatment of IDD.
Collapse
Affiliation(s)
- Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Changsui Yu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| | - Xiaofeng Zhang
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin, 150030, China
| | - Zhongbao Yu
- Liaoning Yuzhongbao Chinese Medicine Clinic, Kuandian, 118200, China
| | - Fengyuan Zhan
- Liaoning Yuzhongbao Chinese Medicine Clinic, Kuandian, 118200, China
| | - Xin Yu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuren Wang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Feng He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Yusheng Han
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - He Zhao
- Tsinghua University, Beijing, 100084, China
| |
Collapse
|
38
|
Jia R, Du J, Cao L, Feng W, He Q, Xu P, Yin G. Chronic exposure of hydrogen peroxide alters redox state, apoptosis and endoplasmic reticulum stress in common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105657. [PMID: 33075616 DOI: 10.1016/j.aquatox.2020.105657] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide (H2O2) appears to be ubiquitous in natural water. Higher level of H2O2 can cause physiological stress, immunosuppression and even death in aquatic animals, but the physiological and molecular mechanisms of H2O2 toxicity are not well studied. Thus, the aim of the present study was to exposure potential toxic mechanisms of H2O2 via assessing the effects on redox state, apoptosis and endoplasmic reticulum (ER) stress in common carp. The fish were subjected to four concentrations of H2O2 (0, 0.25, 0.5 and 1 mM) for 14 days. And then, the tissues including blood, liver, muscle, gills, intestines, heart, kidney and spleen were collected to measure biochemical parameter and gene expression. The results showed that H2O2 exposure suppressed the majority antioxidative parameters in serum, liver, muscle and intestines, but enhanced T-SOD, CAT and T-AOC levels in gills. In all tested tissues, the MDA content was significantly promoted by H2O2 exposure. The oxidative stress-related genes including nrf2, gstα, sod, cat and/or gpx1 were upregulated in liver, gills, muscle, intestines, and/or kidney, but downregulated in heart after H2O2 exposure. Moreover, the ho-1 mRNA level was inhibited by H2O2 exposure in all tissues except intestines and spleen. After 14 days of exposure, H2O2 induced ER stress and initiated IRE1 and PERK pathways, which activated downstream genes, including chop, grp78 and/or xbp1s, to regulate UPR in liver, gills, muscle and/or heart. Meanwhile, H2O2 exposure activated MAPK pathway to regulate mitochondria-related genes including bcl-2, bax and cytc, which further triggered cas-8, cas-9 and cas-3, and accelerated apoptosis in liver, gills, muscle and heart. Importantly, in different tissues, the genes associated with oxidative stress, ER stress and apoptosis showed a different influence, and more significant influence was observed in the muscle, gills and liver. Overall results suggested that long-term H2O2 exposure induced oxidative stress, ER stress and apoptosis in the majority of tested tissues of common carp. The Nrf2, IRE1, PERK and MAPK pathways played important roles in H2O2-induced toxicity in fish. These data enriched the toxicity mechanism of H2O2 in fish, which might contribute to the risk assessment of H2O2 in aquatic environment.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
39
|
Mitochondrial Dysfunction in Intervertebral Disc Degeneration: From Pathogenesis to Therapeutic Target. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/8880320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondria are cytosolic organelles essential for cellular function and survival. The function of mitochondria is maintained by mitochondrial quality control systems including mitochondrial fission and fusion to adapt the altered environment and mitophagy for removal of damaged mitochondria. Mitochondrial dysfunction is closely involved in aging-related diseases. Intervertebral disc (IVD) degeneration, an aging-associated process, is the major contributor to low back pain. Growing evidence has suggested that the mitochondrial function in IVD cells is severely compromised during the degenerative process of IVD, and dysfunctional mitochondria along with impaired mitochondrial dynamics and mitophagy cause a series of cascade reactions that have been implicated in increased oxidative stress, senescence, matrix catabolism, and apoptosis of IVD cells, thereby contributing to the degeneration of IVD. Accordingly, therapies that target mitochondrial dysfunction and related mechanisms, such as ROS generation, mitophagy, and specific molecules and signaling, hold great promise. The present review summarizes the current state of the role of mitochondrial dysfunction in the pathophysiology of IVD degeneration and potential therapeutic strategies that could be developed.
Collapse
|
40
|
Icariin Ameliorates Lower Back Pain in Rats via Suppressing the Secretion of Cytokine-Induced Neutrophil Chemoatractant-1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4670604. [PMID: 32802846 PMCID: PMC7426770 DOI: 10.1155/2020/4670604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/25/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
Purpose To investigate whether icariin (ICA), a well-known medicine extracted from the stem and leaf of Epimedium brevicornum Maxim, had analgesic effect on lower back pain (LBP) in rats. Methods In a puncture-induced LBP rat model, the severity of LBP was quantified using the paw/foot withdrawal threshold method after intragastric administration of ICA at a dosage of 50 mg/kg/d or 100 mg/kg/d. The pain-related peptides of substance P (SP) and calcitonin gene-related peptide (CGRP) were also measured in intervertebral disc (IVD) tissue using RT-PCR after ICA treatment. In addition, the expression of cytokine-induced neutrophil chemoattractant-1 (CINC-1) in IVD was quantified using RT-PCR and ELISA examination. Results ICA treatment resulted in a significant amelioration of mechanical allodynia in a dose-response manner, and the analgesic effect could last for two weeks even during the washout period. More importantly, the mechanism of analgesic pharmacological effect in ICA was to suppress the upregulated CINC-1, the homolog of IL-8 in rats, which is a crucial proalgesic factor contributing to LBP, in IVDs. Conclusion ICA is a novel herbal extract to relieve LBP, and it may be a promising alternative pain killer in the future.
Collapse
|