1
|
Zhang T, Li G, Ren H, Yang L, Yang X, Tan R, Tang Y, Guo D, Zhao H, Shang W, Shen Y. Sub-millimeter fiberscopic robot with integrated maneuvering, imaging, and biomedical operation abilities. Nat Commun 2024; 15:10874. [PMID: 39738028 DOI: 10.1038/s41467-024-55199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.95 mm achieved by microscale 3D printing and magnetic spray, this continuum robot delivers competitive imaging performance and extends obstacle detection distance up to ~9.4 mm, a tenfold improvement from the theoretical limits. Besides, the robot showcases remarkable motion precision (less than 30 μm) and substantially widens the imaging region by ~25 times the inherent view. Through ex vivo trials, we validate the robot's practicality in navigating constrained channels, such as the lung end bronchus, and executing multifunctional operations including sampling, drug delivery, and laser ablation. The proposed submillimeter continuum robot marks a significant advancement in developing biomedical robots, unlocking numerous potential applications in biomedical engineering.
Collapse
Affiliation(s)
- Tieshan Zhang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gen Li
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Ren
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Liu Yang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiong Yang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rong Tan
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yifeng Tang
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Dong Guo
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Haoxiang Zhao
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wanfeng Shang
- National Engineering Laboratory of Big Data System Computing Technology, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
| | - Yajing Shen
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
- Center on Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
2
|
Heidarzadehpilehrood R, Pirhoushiaran M, Osman MB, Ling KH, Hamid HA. A high-throughput RNA sequency of peripheral blood mononuclear cells reveals on inflammatory state in women with PCOS. Arch Med Res 2024; 56:103129. [PMID: 39647252 DOI: 10.1016/j.arcmed.2024.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine and reproductive condition affecting women of reproductive age, although its expression profiles and molecular pathways are not fully understood. AIMS To identify the transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in women with PCOS and controls. To investigate noninvasive diagnostic biomarkers and potential treatment targets to improve women's fertility. METHODS RNA sequencing (RNA-Seq) was conducted on PBMC samples from six patients with PCOS and six healthy controls. qRT-PCR validation was carried out in 68 subjects. Multivariate logistic regression was performed to assess the combined impact of biomarkers. RESULTS A total of 186 differentially expressed genes (DEG) were found between patients and controls (log2FC >1, p < 0.05). Enrichment analysis revealed cytokine-mediated signaling pathways, cytokine activity, and cytokine-cytokine receptor interaction. RNA sequencing showed consistency with qRT-PCR. Women with PCOS had significantly higher levels of AQP9 (p < 0.001), PROK2 (p = 0.001), and S100A12 (p < 0.001) expression compared to controls. AQP9 (AUC = 0.77), PROK2 (AUC = 0.71), and S100A12 (AUC = 0.82) adequately discriminated women with PCOS from healthy controls. In addition, multiple logistic regression on biomarkers resulted in a significant diagnostic power with an AUC = 0.89, 95 % CI: 0.81-0.97, p < 0.0001. Further associations were analyzed between relative gene expression and clinical, anthropometric, hormonal, and ultrasonographic data. CONCLUSIONS Dysregulated RNA expression in PBMCs may contribute to an increased risk of PCOS and serve as a potential diagnostic biomarker. The involvement of inflammatory and cytokine-related pathways supports the notion that PCOS is a chronic inflammatory condition.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Malina Binti Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Malaysian Research Institution on Ageing, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Habibah Abdul Hamid
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Ribeiro JC, Rodrigues BC, Bernardino RL, Alves MG, Oliveira PF. The interactome of cystic fibrosis transmembrane conductance regulator and its role in male fertility: A critical review. J Cell Physiol 2024; 239:e31422. [PMID: 39324358 DOI: 10.1002/jcp.31422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic adenosine monophosphate (cAMP)-regulated chloride and bicarbonate ion channel found in many human cells. Its unique biochemical characteristics and role as a member of the adenosine triphosphate (ATP)-binding cassette transporters superfamily are pivotal for the transport of several substrates across cellular membranes. CFTR is known to interact, physically and functionally, with several other cellular proteins. Hence, its properties are essential for moving various substances across cell membranes and ensuring correct cell functioning. Genetic mutations or environmental factors may disrupt CFTR's function resulting in different possible phenotypes due to gene variations that affect not only CFTR's function, localization, and processing within cells, but also those of its interactors. This has been reported as an underlying cause of various diseases, including cystic fibrosis. The severe clinical implications of cystic fibrosis have driven intense research into the role of CFTR in lung function but its significance to fertility, particularly in men, has been comparatively understudied. However, ongoing and more recent research into CFTR and its interacting proteins in the testis or specific testicular cells is beginning to shed light on this field. Herein, we provide a comprehensive and up-to-date overview of the CFTR, its interactome, and its crucial role in male reproduction, highlighting recent discoveries and advancements in understanding the molecular mechanisms involved. The comprehension of these complex interactions may pave the way for potential therapeutic approaches to improve fertility of men suffering from alterations in the function of CFTR.
Collapse
Grants
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds.
- Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018.
- This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
- This research was funded by "Fundação para a Ciência e a Tecnologia"-FCT to UMIB (UIDB/00215/2020, and UIDP/00215/2020), ITR-Laboratory for Integrative and Translational Research in Population Health (LA/P/0064/2020) and the post-graduation students João C. Ribeiro (UI/BD/150749/2020). The work was co-funded by FEDER through the COMPETE/QREN, FSE/POPH and POCI-COMPETE 2020 (POCI-01-0145-FEDER-007491) funds. Pedro F. Oliveira is funded by national funds through FCT-Fundação para a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus-Institutional Call-reference CEEC-INST/00026/2018. This work also received support and help from FCT/MCTES to LAQV-REQUIMTE (LA/P/0008/202 - DOI 10.54499/LA/P/0008/2020; UIDP/50006/2020 - DOI 10.54499/UIDP/50006/2020; and UIDB/50006/2020 - DOI 10.54499/UIDB/50006/2020) and to iBiMed (UIDB/04501/2020 - DOI 10.54499/UIDB/04501/2020 and UIDP/04501/2020 - DOI 10.54499/UIDP/04501/2020), through national funds
Collapse
Affiliation(s)
- João C Ribeiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bernardo C Rodrigues
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Raquel L Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Peris-Frau P, Sanchez-Rodriguez A, Velázquez R, Toledano-Díaz A, Castaño C, Roldan ERS, Santiago-Moreno J. Capacitation of ram spermatozoa promotes changes in energy metabolism and aquaporin 3 and is affected by individual testosterone variations. Andrology 2024. [PMID: 39238428 DOI: 10.1111/andr.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Recently, the metabolic pathways involved in energy production and the role of aquaglyceroporins in capacitation-associated events have been studied in humans and mice. However, little is known about these in ram spermatozoa. OBJECTIVE The present study investigated bioenergetic and aquaglyceroporin 3 variations during in vitro capacitation of ram spermatozoa. In addition, differences in testosterone levels between males were examined to determine their influence on capacitation-like changes. MATERIALS AND METHODS Spermatozoa obtained from nine rams (ejaculates = 36) were incubated for 180 min in three different media (control, capacitating, and aquaglyceroporin-inhibitor media) at 38.5°C. At 0 and 180 min of incubation in each medium, sperm viability, kinetics, chlortetracycline patterns, adenosine triphosphate concentration, lactate excretion (final subproduct of glycolysis), and immunolocalization of aquaporin 3 were evaluated. RESULTS The increment of the capacitated spermatozoa-chlortetracycline pattern and the hyperactivated-like movement characterized by the highest curvilinear velocity and amplitude of lateral head displacement and the lowest linearity was only recorded after 180 min in the capacitating medium. At this time and conditions, adenosine triphosphate content and lactate excretion decreased, whereas the aquaglyceroporin 3 location in the midpiece and principal piece increased compared to 0 min. Such changes were not observed in the control medium over time. Incubation in the aquaglyceroporin-inhibitor medium for 180 min reduced drastically sperm motility and adenosine triphosphate content compared to the other media. Testosterone analysis revealed a significant individual variability, which was also present in all sperm parameters evaluated. Furthermore, testosterone was negatively correlated with adenosine triphosphate content but positively correlated with lactate excretion levels, sperm viability, motility, capacitated sperm-chlortetracycline pattern, and aquaglyceroporin 3 immunolabeling in the midpiece and principal piece. CONCLUSION Despite individual differences, capacitation of ram spermatozoa increases adenosine triphosphate consumption, energy metabolism, and aquaglyceroporin 3 location in the midpiece and principal piece, which seems to be related to the acquisition of hyperactivated-like motility. Furthermore, testosterone levels may serve as a valuable tool to select those males with a greater sperm metabolism rate and fertilizing capacity.
Collapse
Affiliation(s)
- Patricia Peris-Frau
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), Madrid, Spain
| | - Rosario Velázquez
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| | - Adolfo Toledano-Díaz
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| | - Cristina Castaño
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), Madrid, Spain
| | - Julián Santiago-Moreno
- Departament of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (CSIC), Madrid, Spain
| |
Collapse
|
5
|
Yamamoto E, Joo K, Lee J, Sansom MSP, Yasui M. Molecular mechanism of anion permeation through aquaporin 6. Biophys J 2024; 123:2496-2505. [PMID: 38894539 PMCID: PMC11365104 DOI: 10.1016/j.bpj.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Aquaporins (AQPs) are recognized as transmembrane water channels that facilitate selective water permeation through their monomeric pores. Among the AQP family, AQP6 has an intriguing characteristic as an anion channel, which is allosterically controlled by pH conditions and is eliminated by a single amino acid mutation. However, the molecular mechanism of anion permeation through AQP6 remains unclear. Using molecular dynamics simulations in the presence of a transmembrane voltage utilizing an ion concentration gradient, we show that chloride ions permeate through the pore corresponding to the central axis of the AQP6 homotetramer. Under low pH conditions, a subtle opening of the hydrophobic selectivity filter (SF), located near the extracellular part of the central pore, becomes wetted and enables anion permeation. Our simulations also indicate that a single mutation (N63G) in human AQP6, located at the central pore, significantly reduces anion conduction, consistent with experimental data. Moreover, we demonstrate that the pH-sensing mechanism in which the protonation of H184 and H189 under low pH conditions allosterically triggers the gating of the SF region. These results suggest a unique pH-dependent allosteric anion permeation mechanism in AQP6 and could clarify the role of the central pore in some of the AQP tetramers.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa, Japan.
| | - Keehyoung Joo
- Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, Korea
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Aytekin A, Yazir Y, Duruksu G, Öztürk A. Comparison of aquaporin profile of advanced passage mesenchymal stem cells with early passage mesenchymal stem cells and determination of its effect on adipogenic differentiation efficiency. Tissue Cell 2024; 89:102448. [PMID: 38917601 DOI: 10.1016/j.tice.2024.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE Our study aimed to compare aquaporin profiles in advanced and early passage bone marrow-derived mesenchymal stem cells (BM-MSCs) and assess the impact of aquaporin changes after adipogenic differentiation. Aquaporins are crucial for stem cell survival and differentiation during their life cycle. We focused on the role of aquaporins in the cell structures of advanced and early passage stem cells. METHODS In our study, BM-MSCs were used for our objectives. Characterization of the cells was evaluated via flow cytometry using stem cell surface markers. The characterized BM-MSCs were divided into control and differentiation groups at passages 3 (P3) and 8 (P8). AQP1, AQP3, AQP7, AQP9, and AQP10 expression levels on days 0, 1, 3, 7, 14, and 21 were evaluated using Real Time-PCR, ELISA, and immunofluorescence studies. RESULTS The cells were characterized by flow cytometry and confirmed to exhibit BM-MSC characteristics. At P3 and P8, differentiation was initiated, and AQP protein expression was observed to initially increase and then decrease on subsequent days. The increase in AQP protein expression at P3 occurred earlier than that at P8. Gene expression analysis demonstrated a statistically significant increase in AQP gene expression on days when AQP protein expression decreased. Moreover, statistical differences were observed between late and early passage AQP profiles. CONCLUSION Our study examined the composition of AQPs in BM-MSCs in association with cell passage, and found that AQPs play a role in the differentiation process. The connection between the AQP profile and aging might be related to differentiation capacity, which could have implications for slowing down cellular aging and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Ayşegül Aytekin
- Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Yusufhan Yazir
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| | - Gökhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Öztürk
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
7
|
Oberska P, Grabowska M, Marynowska M, Murawski M, Gączarzewicz D, Syczewski A, Michałek K. A Step Forward in Understanding the Expression of Classical Aquaporins in the Male Reproductive Tract: Study Findings in Cattle ( Bos taurus). Int J Mol Sci 2024; 25:7653. [PMID: 39062896 PMCID: PMC11276675 DOI: 10.3390/ijms25147653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaporins (AQPs), also known as water channels, appear to be particularly promising in maintaining male reproductive potential. Therefore, this study aimed to determine the presence of classical AQPs in the bovine (Bos taurus) reproductive system and analyze changes in their expression with age using immunohistochemistry and Western blotting. Of the six classical AQPs, AQP0, AQP1, AQP4, AQP5 and AQP6 were detected, while AQP2 was absent. In the testis, AQP0 was visible in Leydig cells in selected animals, while AQP1 was found in myoid cells surrounding the seminiferous tubules of mature individuals. This characteristic expression patterns of AQP0, limited only to certain bulls, is difficult to explain unequivocally. It is possible that AQP0 expression in cattle is subject to individual variability or changes in response to specific physiological conditions. In the caput and corpus epididymis, AQP0 showed weak expression in epithelial cells of immature animals and stronger expression in basal and principal cells of reproductive bulls. In all animals, AQP1 was present on the apical surface of epithelial cells in the initial segment of the caput epididymis. AQP4, AQP5 and AQP6 were identified in principal and basal cells along the entire epididymis of reproductive bulls. The abundance of AQP4 and AQP6 increased from the caput to the cauda epididymis with the growth and development of the animals. In all males, AQP4, AQP5 and AQP6 were observed in epithelial cells of the vas deferens, and their expression in this section increased with age. In conclusion, the abundance and distribution of the classical AQPs in various cell types and parts of the male reproductive system indicate their crucial role in maintaining water homeostasis, which is essential for normal reproductive function in cattle.
Collapse
Affiliation(s)
- Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Marta Marynowska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Maciej Murawski
- Department of Nutrition, Animal Biotechnology and Fisheries, University of Agriculture, 24/28 Mickiewicza Avenue, 30-059 Cracow, Poland;
| | - Dariusz Gączarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | | | - Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| |
Collapse
|
8
|
Castro-Arnau J, Chauvigné F, Toft-Bertelsen TL, Finn RN, MacAulay N, Cerdà J. Aqp4a and Trpv4 mediate regulatory cell volume increase for swimming maintenance of marine fish spermatozoa. Cell Mol Life Sci 2024; 81:285. [PMID: 38969941 PMCID: PMC11335209 DOI: 10.1007/s00018-024-05341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Volume regulation is essential for cell homeostasis and physiological function. Amongst the sensory molecules that have been associated with volume regulation is the transient receptor potential vanilloid 4 (TRPV4), which is a non-selective cation channel that in conjunction with aquaporins, typically controls regulatory volume decrease (RVD). Here we show that the interaction between orthologous AQP4 (Aqp4a) and TRPV4 (Trpv4) is important for regulatory volume increase (RVI) in post-activated marine fish spermatozoa under high osmotic stress. Based upon electrophysiological, volumetric, and in vivo and ex vivo functional experiments using the pharmacological and immunological inhibition of Aqp4a and Trpv4 our model suggests that upon ejaculation and exposure to the hypertonic seawater, spermatozoon shrinkage is initially mediated by water efflux through Aqp1aa in the flagellar tail. The shrinkage results in an increase in intracellular Ca2+ concentration, and the activation of sperm motility and a Na+/K+/2Cl- (NKCC1) cotransporter. The activity of NKCC1 is required for the initiation of cell swelling, which secondarily activates the Aqp4a-Trpv4 complex to facilitate the influx of water via Aqp4a-M43 and Ca2+ via Trpv4 and L-type channels for the mediation of RVI. The inhibitory experiments show that blocking of each of these events prevents either shrinkage or RVI. Our data thus reveal that post-activated marine fish spermatozoa are capable of initiating RVI under a high hypertonic stress, which is essential for the maintenance of sperm motility.
Collapse
Affiliation(s)
- Júlia Castro-Arnau
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, 08003, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
- Department of Cell Biology & Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, 08003, Spain
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
| | | | - Roderick Nigel Finn
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
- Department of Biological Sciences, University of Bergen, Bergen, 5020, Norway
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Joan Cerdà
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, 08003, Spain.
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain.
| |
Collapse
|
9
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
10
|
Oberska P, Grabowska M, Marynowska M, Murawski M, Gączarzewicz D, Syczewski A, Michałek K. Cellular Distribution of Aquaporin 3, 7 and 9 in the Male Reproductive System: A Lesson from Bovine Study ( Bos taurus). Int J Mol Sci 2024; 25:1567. [PMID: 38338845 PMCID: PMC10855163 DOI: 10.3390/ijms25031567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The increasing incidence of male infertility in humans and animals creates the need to search for new factors that significantly affect the course of reproductive processes. Therefore, the aim of this study was to determine the temporospatial expression of aquaglyceroporins (AQP3, AQP7 and AQP9) in the bovine (Bos taurus) reproductive system using immunohistochemistry and Western blotting. The study also included morphological analysis and identification of GATA-4. In brief, in immature individuals, AQP3 and AQP7 were found in gonocytes. In reproductive bulls, AQP3 was observed in spermatocytes and spermatogonia, while AQP7 was visible in all germ cells and the Sertoli cells. AQP7 and AQP9 were detected in the Leydig cells. Along the entire epididymis of reproductive bulls, aquaglyceroporins were visible, among others, in basal cells (AQP3 and AQP7), in epididymal sperm (AQP7) and in the stereocilia of the principal cells (AQP9). In males of all ages, aquaglyceroporins were identified in the principal and basal cells of the vas deferens. An increase in the expression of AQP3 in the testis and cauda epididymis and a decrease in the abundance of AQP7 in the vas deferens with age were found. In conclusion, age-related changes in the expression and/or distribution patterns of AQP3, AQP7 and AQP9 indicate the involvement of these proteins in the normal development and course of male reproductive processes in cattle.
Collapse
Affiliation(s)
- Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Marta Marynowska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| | - Maciej Murawski
- Department of Nutrition, Animal Biotechnology and Fisheries, University of Agriculture in Krakow, 24/28 Mickiewicza Avenue, 30-059 Cracow, Poland;
| | - Dariusz Gączarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | | | - Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (P.O.); (M.M.)
| |
Collapse
|
11
|
Michałek K, Oberska P. Aquaporins in the male reproductive system: A chance for paternity or a road to nowhere? Andrology 2023; 11:970-972. [PMID: 36609877 DOI: 10.1111/andr.13374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023]
Abstract
Aquaporins-small, "unusual" proteins, whose discovery revolutionized the view of membrane transport of water and other small molecules, are essential for all living organisms. Aquaporins located in the male reproductive system seem to play a key role in the proper course of many processes occurring within it, thus maintaining a high reproductive potential.
Collapse
Affiliation(s)
- Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| |
Collapse
|
12
|
Ribeiro JC, Bernardino RL, Gonçalves A, Barros A, Calamita G, Alves MG, Oliveira PF. Aquaporin-7-Mediated Glycerol Permeability Is Linked to Human Sperm Motility in Asthenozoospermia and during Sperm Capacitation. Cells 2023; 12:2003. [PMID: 37566082 PMCID: PMC10416866 DOI: 10.3390/cells12152003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Osmoregulation plays a vital role in sperm function, encompassing spermatogenesis, maturation, and fertilization. Aquaglyceroporins, a subclass of aquaporins (AQPs), facilitate the transport of water and glycerol across the sperm membrane, with glycerol serving as an important substrate for sperm bioenergetics. This study aimed to elucidate the significance of AQP-mediated glycerol permeability in sperm motility. The presence and localization of AQP3 and AQP7 in human sperm were assessed using immunofluorescence. Subsequently, the glycerol permeability of spermatozoa obtained from normozoospermic individuals (n = 30) was measured, using stopped-flow light scattering, after incubation with specific aquaporin inhibitors targeting AQP3 (DFP00173), AQP7 (Z433927330), or general aquaglyceroporin (phloretin). Sperm from asthenozoospermic men (n = 30) were utilized to evaluate the AQP7-mediated glycerol permeability, and to compare it with that of normozoospermic men. Furthermore, hypermotile capacitated sperm cells were examined, to determine the AQP7 expression and membrane glycerol permeability. AQP3 was predominantly observed in the tail region, while AQP7 was present in the head, midpiece, and tail of human sperm. Our findings indicate that AQP7 plays a key role in glycerol permeability, as the inhibition of AQP7 resulted in a 55% decrease in glycerol diffusion across the sperm membrane. Importantly, this glycerol permeability impairment was evident in spermatozoa from asthenozoospermic individuals, suggesting the dysregulation of AQP7-mediated glycerol transport, despite similar AQP7 levels. Conversely, the AQP7 expression increased in capacitated sperm, compared to non-capacitated sperm. Hence, AQP7-mediated permeability may serve as a valuable indicator of sperm motility, and be crucial in sperm function.
Collapse
Affiliation(s)
- João C. Ribeiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (J.C.R.); (R.L.B.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal
| | - Raquel L. Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (J.C.R.); (R.L.B.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4050-313 Porto, Portugal
| | - Ana Gonçalves
- Centre for Reproductive Genetics Professor Alberto Barros, 4100-012 Porto, Portugal (A.B.)
| | - Alberto Barros
- Centre for Reproductive Genetics Professor Alberto Barros, 4100-012 Porto, Portugal (A.B.)
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal
| |
Collapse
|
13
|
Male Sex Hormones, Metabolic Syndrome, and Aquaporins: A Triad of Players in Male (in)Fertility. Int J Mol Sci 2023; 24:ijms24031960. [PMID: 36768282 PMCID: PMC9915845 DOI: 10.3390/ijms24031960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Infertility is becoming a chronic and emerging problem in the world. There is a resistant stigma that this health condition is mostly due to the female, although the literature supports that the responsibility for the onset of infertility is equally shared between both sexes in more or less equal proportions. Nevertheless, male sex hormones, particularly testosterone (T), are key players in male-related infertility. Indeed, hypogonadism, which is also characterized by changes in T levels, is one of the most common causes of male infertility and its incidence has been interconnected to the increased prevalence of metabolic diseases. Recent data also highlight the role of aquaporin (AQP)-mediated water and solute diffusion and the metabolic homeostasis in testicular cells suggesting a strong correlation between AQPs function, metabolism of testicular cells, and infertility. Indeed, recent studies showed that both metabolic and sexual hormone concentrations can change the expression pattern and function of AQPs. Herein, we review up-to-date information on the involvement of AQP-mediated function and permeability in men with metabolic syndrome and testosterone deficit, highlighting the putative mechanisms that show an interaction between sex hormones, AQPs, and metabolic syndrome that may contribute to male infertility.
Collapse
|
14
|
Advances in Aquaporins. Cells 2023; 12:cells12020303. [PMID: 36672238 PMCID: PMC9856845 DOI: 10.3390/cells12020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
[Aquaporins (AQPs) are a family of transmembrane channel proteins, widespread...].
Collapse
|
15
|
da Silva IV, Garra S, Calamita G, Soveral G. The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 2022; 12:biom12070897. [PMID: 35883453 PMCID: PMC9313442 DOI: 10.3390/biom12070897] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention. Aquaporin-9 (AQP9) is the most expressed in the liver, with implications in general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities, facilitating glycerol and hydrogen peroxide (H2O2) diffusion across membranes. AQP9 is also expressed in other tissues, and their altered expression is described in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders. The present review compiles the current knowledge of AQP9 implication in diseases and highlights its potential as a new biomarker for diagnosis and prognosis in clinical medicine.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
- Correspondence: (G.C.); (G.S.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: (G.C.); (G.S.)
| |
Collapse
|
16
|
Mohamed EA, Im JW, Kim DH, Bae HR. Differential Expressions of Aquaporin Subtypes in the Adult Mouse
Testis. Dev Reprod 2022; 26:59-69. [PMID: 35950167 PMCID: PMC9336216 DOI: 10.12717/dr.2022.26.2.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/14/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Many efforts have been made to study the expression of aquaporins (AQP) in the
mammalian reproductive system, but there are not enough data available regarding
their localized expression to fully understand their specific roles in male
reproduction. The present study investigated the expression and localization
patterns of different AQP subtypes in the adult mouse testes and testicular
spermatozoa using an immunofluorescence assay. All the studied AQPs were
expressed in the testes and revealed subtype-specific patterns in the intensity
and localization depending on the cell types of the testes. AQP7 was the most
abundant and intensive AQP subtype in the seminiferous tubules, expressing in
Leydig cells and Sertoli cells as well as all stages of germ cells, especially
the spermatids and testicular spermatozoa. The expression pattern of AQP3 was
similar to that of AQP7, but with higher expression in the basal and lower
adluminal compartments rather than the upper adluminalcompartment. AQP8
expression was limited to the spermatogonia and Leydig cells whereas AQP9
expression was exclusive to tails of the testicular spermatozoa and elongated
spermatids. Taken together, the abundance and distribution of the AQPs across
the different cell types in the testes indicating to their relavance in
spermatogenesis, as well as in sperm maturation, transition, and function.
Collapse
Affiliation(s)
- Elsayed A. Mohamed
- Dept. of Physiology, College of Medicine,
Dong-A University, Busan 49201,
Korea
- Dept. of Genetics, Assiut
University, Assiut 71526, Egypt
| | - Ji Woo Im
- Dept. of Physiology, College of Medicine,
Dong-A University, Busan 49201,
Korea
| | - Dong-Hwan Kim
- Human Life Research Center, Dong-A
University, Busan 49315, Korea
| | - Hae-Rahn Bae
- Dept. of Physiology, College of Medicine,
Dong-A University, Busan 49201,
Korea
- Corresponding author Hae-Rahn Bae, Dept. of
Physiology, Dong-A University, College of Medicine, Busan 49201, Korea. Tel:
+82-51-240-2924, Fax:
+82-51-245-3872, E-mail:
| |
Collapse
|
17
|
Juárez OE, Arreola-Meraz L, Sánchez-Castrejón E, Avila-Poveda OH, López-Galindo LL, Rosas C, Galindo-Sánchez CE. Oviducal gland transcriptomics of Octopus maya through physiological stages and the negative effects of temperature on fertilization. PeerJ 2022; 10:e12895. [PMID: 35378931 PMCID: PMC8976471 DOI: 10.7717/peerj.12895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023] Open
Abstract
Background Elevated temperatures reduce fertilization and egg-laying rates in the octopus species. However, the molecular mechanisms that control the onset of fertilization and egg-laying in the octopus' oviducal gland are still unclear; and the effect of temperature on the expression of key reproductive genes is unknown. This study aims to better understand the molecular bases of octopus fertilization and egg-laying, and how they are affected by elevated temperatures. Method RNA-seq of oviducal glands was performed for samples before, during, and after fertilization and their transcriptomic profiles were compared. Also, at the fertilization stage, the optimal and thermal-stress conditions were contrasted. Expression levels of key reproductive genes were validated via RT-qPCR. Results In mated females before egg-laying, genes required for the synthesis of spermine, spermidine, which may prevent premature fertilization, and the myomodulin neuropeptide were upregulated. Among the genes with higher expression at the fertilization stage, we found those encoding the receptors of serotonin, dopamine, and progesterone; genes involved in the assembly and motility of the sperm flagellum; genes that participate in the interaction between male and female gametes; and genes associated with the synthesis of eggshell mucoproteins. At temperatures above the optimal range for reproduction, mated females reduced the fertilization rate. This response coincided with the upregulation of myomodulin and APGW-amide neuropeptides. Also, genes associated with fertilization like LGALS3, VWC2, and Pcsk1 were downregulated at elevated temperatures. Similarly, in senescent females, genes involved in fertilization were downregulated but those involved in the metabolism of steroid hormones like SRD5A1 were highly expressed.
Collapse
Affiliation(s)
- Oscar E. Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| | - Lousiana Arreola-Meraz
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| | - Edna Sánchez-Castrejón
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| | - Omar Hernando Avila-Poveda
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, México,Programa Investigadoras e Investigadores por México, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Laura L. López-Galindo
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación - Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada, Baja California, México
| |
Collapse
|
18
|
Kannan A, Mariajoseph-Antony LF, Panneerselvam A, Loganathan C, Kiduva Jothiraman D, Anbarasu K, Prahalathan C. Aquaporin 9 regulates Leydig cell steroidogenesis in diabetes. Syst Biol Reprod Med 2022; 68:213-226. [DOI: 10.1080/19396368.2022.2033350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Chithra Loganathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Diwakar Kiduva Jothiraman
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Kumarasamy Anbarasu
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
19
|
Relevance of Aquaporins for Gamete Function and Cryopreservation. Animals (Basel) 2022; 12:ani12050573. [PMID: 35268142 PMCID: PMC8909058 DOI: 10.3390/ani12050573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The interaction between cells and the extracellular medium is of great importance; changes in medium composition can drive water movement across plasma membranes. Aquaporins (AQPs) are membrane channels involved in the transport of water and some solutes across membranes. When sperm enter the female reproductive tract after ejaculation, they encounter a drastic change in extracellular composition, which leads to water flowing across the plasma membrane. This triggers a series of events that are crucial to allowing fertilization to take place, such as regulation of sperm motility. In the context of assisted reproduction techniques (ART), long-term storage of gametes is sometimes required, and, during cryopreservation, these cells undergo drastic changes in extracellular medium composition. As a result, AQPs are crucial in both sperm and oocytes during this process. Cryopreservation is of considerable importance for fertility preservation in livestock, endangered species and for individuals undergoing certain medical treatments that compromise their fertility. Further research to fully elucidate the roles and underlying mechanisms of AQPs in mammalian sperm is therefore warranted. Abstract The interaction between cells and the extracellular medium is of great importance, and drastic changes in extracellular solute concentrations drive water movement across the plasma membrane. Aquaporins (AQPs) are a family of transmembrane channels that allow the transport of water and small solutes across cell membranes. Different members of this family have been identified in gametes. In sperm, they are relevant to osmoadaptation after entering the female reproductive tract, which is crucial for sperm motility activation and capacitation and, thus, for their fertilizing ability. In addition, they are relevant during the cryopreservation process, since some members of this family are also permeable to glycerol, one of the most frequently used cryoprotective agents in livestock. Regarding oocytes, AQPs are very important in their maturation but also during cryopreservation. Further research to define the exact sets of AQPs that are present in oocytes from different species is needed, since the available literature envisages certain AQPs and their roles but does not provide complete information on the whole set of AQPs. This is of considerable importance because, in sperm, specific AQPs are known to compensate the role of non-functional members.
Collapse
|
20
|
Aquaporins and Animal Gamete Cryopreservation: Advances and Future Challenges. Animals (Basel) 2022; 12:ani12030359. [PMID: 35158682 PMCID: PMC8833750 DOI: 10.3390/ani12030359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Cryopreservation is the method for the long-term preservation of gametes and embryos. In recent years, intensive research has focused on improving cryopreservation protocols for the determination of optimal freezing conditions and cryoprotective agents’ concentration for each cell type. The optimal cryopreservation protocol comprises the adequate balance between the freezing rate and the correct concentration of cryoprotective agents to achieve controlled cellular dehydration and minimal intracellular ice formation. Osmoregulation is, therefore, central in cryobiology. Water and some solutes can cross the plasma membrane, whereas facilitating transport takes a great part in intracellular/extracellular fluid homeostasis. Cells express water channels known as aquaporins that facilitate the transport of water and small uncharged solutes on their plasma membrane, including some cryoprotective agents. This review explores the expression and the function of aquaporins in gametes and embryos. In addition, the putative role of aquaporins for cryopreservation procedures is discussed. Abstract Cryopreservation is globally used as a method for long-term preservation, although freeze-thawing procedures may strongly impair the gamete function. The correct cryopreservation procedure is characterized by the balance between freezing rate and cryoprotective agents (CPAs), which minimizes cellular dehydration and intracellular ice formation. For this purpose, osmoregulation is a central process in cryopreservation. During cryopreservation, water and small solutes, including penetrating cryoprotective agents, cross the plasma membrane. Aquaporins (AQPs) constitute a family of channel proteins responsible for the transport of water, small solutes, and certain gases across biological membranes. Thirteen homologs of AQPs (AQP0-12) have been described. AQPs are widely distributed throughout the male and female reproductive systems, including the sperm and oocyte membrane. The composition of the male and female gamete membrane is of special interest for assisted reproductive techniques (ART), including cryopreservation. In this review, we detail the mechanisms involved in gamete cryopreservation, including the most used techniques and CPAs. In addition, the expression and function of AQPs in the male and female gametes are explored, highlighting the potential protective role of AQPs against damage induced during cryopreservation.
Collapse
|
21
|
Lee KH. Expressional Modulation of Aquaporin 1 and 9 in the Rat Epididymis by
an Anabolic-Androgenic Steroid, Nandrolone Decanoate. Dev Reprod 2021; 25:245-255. [PMID: 35141450 PMCID: PMC8807133 DOI: 10.12717/dr.2021.25.4.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022]
Abstract
The spermatozoa become mature in the epididymis which is divided into initial
segment and caput, corpus, and cauda epididymis. The water movement across the
epididymal epithelium is important for creating luminal microenvironment for
sperm maturation. Aquaporins (Aqps) are water channel proteins,
and expression of Aqps is regulated by androgens. The current
research was focused to examine expressional regulation of Aqp1
and Aqp9 by an androgenic-anabolic steroid, nandrolone
decanoate (ND). The ND at the low dose (2 mg/ kg body weight/week) or high dose
(10 mg) was subcutaneously administrated into male rats for 2 or 12 weeks.
Transcript levels of Aqp1 and Aqp9 were
determined by quantitative real-time polymerase chain reaction (PCR) analyses.
In the initial segment, level of Aqp1 was decreased with 12
week-treatment, while Aqp9 level was decreased by the high dose
treatment for 12 weeks. In the caput epididymis, Aqp9
expression was decreased by the low dose treatment. The 2 week-treatment
resulted in an increase of Aqp1 level but a decrease of
Aqp9 expression in the corpus epididymis. In the corpus
epididymis, the 12 week-treatment at the low dose caused the reduction of
Aqp1 and Aqp9 levels, but the high dose
treatment resulted in an increase of Aqp1 expression and a
decrease of Aqp9 level. In the cauda epididymis,
Aqp1 expression was decreased by 2 and 12 week-treatments,
while increases of Aqp9 levels was detected with the high dose
treatment for 2 weeks and with 12 week-treatment. These findings indicate
differential regulation of Aqp1 and Aqp9
expression among epididymal segments by ND.
Collapse
Affiliation(s)
- Ki-Ho Lee
- Dept. of Biochemistry and Molecular
Biology, College of Medicine, Eulji University,
Daejeon 34824, Korea
- Corresponding author Ki-Ho Lee, Dept. of
Biochemistry and Molecular Biology, Eulji University, Daejeon 34824, Korea. Tel:
+82-42-259-1643, Fax:
+82-42-259-1649, E-mail:
| |
Collapse
|
22
|
Aquaporins: New markers for male (in)fertility in livestock and poultry? Anim Reprod Sci 2021; 231:106807. [PMID: 34303091 DOI: 10.1016/j.anireprosci.2021.106807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
Improving the methods utilized to facilitate reproduction is associated with a constant need to search for new factors that not only significantly affect reproductive processes, but also create new possibilities when assessing male reproductive potential. Aquaporins (AQPs) belong to a family of small (28-30 kDa) proteins that facilitate the transport of water and other small molecules. There have been 13 AQPs (AQP0-AQP12) discovered in mammals, and these proteins are present in a wide range of cell types. Almost all AQPs, except AQP6 and AQP12 are present in the male reproductive organs and sperm of mammals and birds. Increasing evidence suggests that these proteins are involved in a number of processes responsible for the optimal functioning of the male reproductive system. This review presents the current state of knowledge regarding the abundance and distribution of AQPs in the male reproductive organs and sperm of various livestock and poultry species, including buffalo, cattle, sheep, horses, pigs, turkeys and goose. Furthermore, the possible physiological and pathophysiological significance of AQPs in male reproduction, as well as hormonal regulation of quantities are discussed. It can be concluded from the studies analyzed in this paper that abundance patterns of AQPs may be considered in the future as specific and universal biomarkers of male fertility and infertility in animal husbandry.
Collapse
|
23
|
Pellavio G, Laforenza U. Human sperm functioning is related to the aquaporin-mediated water and hydrogen peroxide transport regulation. Biochimie 2021; 188:45-51. [PMID: 34087390 DOI: 10.1016/j.biochi.2021.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Aquaporins (AQPs) are transmembrane water channels and some of them are permeable in addition to water to other small solutes including hydrogen peroxide. The sperm cells of mammals and fishes express different AQPs, although there is no agreement in the literature on their localization. In humans, AQP3 and AQP11 are expressed mainly in the tail, AQP7 in the head and AQP8 in the midpiece. Thanks to the results of experiments with KO mice and to data obtained by comparing sub-fertile patients with normospermic subjects, the importance of AQPs for the normal functioning of sperms to ensure normal fertility emerged. AQP3, AQP7 and AQP11 appeared involved in the sperm volume regulation, a key role for fertility because osmoadaptation protect the sperm against a swelling and tail bending that could affect sperm motility. AQP8 seems to have a fundamental role in regulating the elimination of hydrogen peroxide, the most abundant reactive oxygen species (ROS), and therefore in the response to oxidative stress. In this review, the human AQPs expression, their localization and functions, as well as their relevance in normal fertility are discussed. To understand better the AQPs role in human sperm functionality, the results of studies obtained in other animal species were also considered.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, I-27100, Italy.
| |
Collapse
|