1
|
Abudureyimu S, He C, Xie W, Chen Z, Airikenjiang H, Abulaiti D, Cao Y, Qiu H, Gao Y. FOXO3a functions as a transcriptional and co-transcriptional splicing regulator in vascular endothelial cell lines. Gene 2024; 904:148221. [PMID: 38286271 DOI: 10.1016/j.gene.2024.148221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Recent studies have indicated a connection between Forkhead box O3a protein and coronary artery disease, yet the exact role of FOXO3a in the regulation of metabolic processes and apoptosis in vascular endothelial cells is still unknown. Therefore, we investigated the role of FOXO3a on target genes in a human vascular endothelial cell line. Through the utilization of high-throughput sequencing technology, we analyzed gene expression profiles and alternative splicing patterns in human vascular endothelial cells with FOXO3a over expression. This study identified 419 DEGs between FOXO3a-OE HUVEC model and control cells. KEGG analysis indicated that the upregulated genes were mainly enriched in inflammation-related signaling pathways, and the downregulated genes were enriched in lipid metabolism-related pathways.
Collapse
Affiliation(s)
- Shajidan Abudureyimu
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Chunhui He
- China Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 100010 Beijing, China
| | - Wei Xie
- Department of Cardiology, Xinjiang Production and Construction Corps Hospital, 830011 Urumqi, Xinjiang, China
| | - Zhuo Chen
- The Second Clinical Medical College of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Halisha Airikenjiang
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Dilihumaer Abulaiti
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Yan Cao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital Xinjiang Medical University, 830000 Urumqi, Xinjiang, China
| | - Haitang Qiu
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Ying Gao
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China.
| |
Collapse
|
2
|
Zhang D, Zhou Q, Yang X, Zhang Z, Wang D, Hu D, Huang Y, Sheng J, Wang X. Gallic Acid Can Promote Low-Density Lipoprotein Uptake in HepG2 Cells via Increasing Low-Density Lipoprotein Receptor Accumulation. Molecules 2024; 29:1999. [PMID: 38731489 PMCID: PMC11085419 DOI: 10.3390/molecules29091999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.
Collapse
Affiliation(s)
- Dongying Zhang
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (D.Z.); (D.H.)
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (X.Y.); (Z.Z.); (D.W.)
| | - Qixing Zhou
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (X.Y.); (Z.Z.); (D.W.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Xiangxuan Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (X.Y.); (Z.Z.); (D.W.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Zhen Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (X.Y.); (Z.Z.); (D.W.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Dongxue Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (X.Y.); (Z.Z.); (D.W.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Dandan Hu
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (D.Z.); (D.H.)
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (X.Y.); (Z.Z.); (D.W.)
| | - Yewei Huang
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (D.Z.); (D.H.)
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (X.Y.); (Z.Z.); (D.W.)
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Xuanjun Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
3
|
Yu J, Zhou L, Song H, Huang Q, Yu J, Wang S, Zhang X, Li W, Niu X. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct 2023; 14:2444-2458. [PMID: 36786689 DOI: 10.1039/d2fo03218j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Green tea is popular worldwide, so its main active ingredients have attracted people's attention. (-)-Epicatechin gallate (ECG) is the main active component of green tea polyphenols, which has good antioxidant activity, but its cardiovascular intervention is unknown. This study established in vitro and in vivo models of ox-LDL-induced macrophages and HFD-induced ApoE-/- mice to study the effects of ECG on atherosclerotic lesions. Firstly, the study confirmed that ECG has a therapeutic effect in different stages of atherosclerotic plaques. Subsequently, the results showed that the ox-LDL-induced release of pro-inflammatory mediators and the expression of the related protein CD86 in macrophages were inhibited by ECG. ECG blocked the formation of cellular foam by downregulating the expression of CD36 and LOX-1 proteins, thereby increasing SOD activity and reducing MDA production in cells. ECG also prevented ox-LDL-induced apoptosis, promoted macrophage migration, and increased plaque stability. The results confirmed that ECG attenuated ox-LDL-induced green fluorescence of ROS in macrophages by inhibiting the expression of related proteins in the NF-κB signaling pathway and activating the HO-1/Nrf2 signaling pathway. These results indicated that ECG has anti-oxidative stress and anti-inflammatory potential, and its molecular mechanism may be related to the inhibition of intracellular NF-κB signaling pathway proteins and activation of the HO-1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| |
Collapse
|
4
|
Wang H, Liu H, Zhao X, Chen X. Heterogeneous nuclear ribonucleoprotein U-actin complex derived from extracellular vesicles facilitates proliferation and migration of human coronary artery endothelial cells by promoting RNA polymerase II transcription. Bioengineered 2022; 13:11469-11486. [PMID: 35535400 PMCID: PMC9276035 DOI: 10.1080/21655979.2022.2066754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Coronary artery disease (CAD) represents a fatal public threat. The involvement of extracellular vesicles (EVs) in CAD has been documented. This study explored the regulation of embryonic stem cells (ESCs)-derived EVs-hnRNPU-actin complex in human coronary artery endothelial cell (HCAEC) growth. Firstly, in vitro HCAEC hypoxia models were established. EVs were extracted from ESCs by ultracentrifugation. HCAECs were treated with EVs and si-VEGF for 24 h under hypoxia, followed by assessment of cell proliferation, apoptosis, migration, and tube formation. Uptake of EVs by HCAECs was testified. Additionally, hnRNPU, VEGF, and RNA Pol II levels were determined using Western blotting and CHIP assays. Interaction between hnRNPU and actin was evaluated by Co-immunoprecipitation assay. HCAEC viability and proliferation were lowered, apoptosis was enhanced, wound fusion was decreased, and the number of tubular capillary structures was reduced under hypoxia, whereas ESC-EVs treatment counteracted these effects. Moreover, EVs transferred hnRNPU into HCAECs. EVs-hnRNPU-actin complex increased RNA Pol II level on the VEGF gene promoter and promoted VEGF expression in HCAECs. Inhibition of hnRNPU or VEGF both annulled the promotion of EVs on HCAEC growth. Collectively, ESC-EVs-hnRNPU-actin increased RNA Pol II phosphorylation and VEGF expression, thus promoting HCAEC growth.
Collapse
Affiliation(s)
- Han Wang
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hengdao Liu
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xi Zhao
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaowei Chen
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
5
|
Kee Z, Ong SM, Heng CK, Ooi DSQ. Androgen-dependent tissue factor pathway inhibitor regulating protein: a review of its peripheral actions and association with cardiometabolic diseases. J Mol Med (Berl) 2021; 100:185-196. [PMID: 34797389 DOI: 10.1007/s00109-021-02160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
The first genome-wide association study on coronary artery disease (CAD) in the Han Chinese population identified C6orf105 as a susceptibility gene. The C6orf105 gene was later found to encode for a protein that regulates tissue factor pathway inhibitor (TFPI) expression in endothelial cells in an androgen-dependent manner, and the novel protein was thus termed androgen-dependent TFPI-regulating protein (ADTRP). Since the identification of ADTRP, there have been several studies associating genetic variants on the ADTRP gene with CAD risk, as well as research providing mechanistic insights on this novel protein and its functional role. ADTRP is a membrane protein, whose expression is upregulated by androgen, GATA-binding protein 2, oxidized low-density lipoprotein, peroxisome proliferator-activated receptors, and low-density lipoprotein receptors. ADTRP regulates multiple downstream targets involved in coagulation, inflammation, endothelial function, and vascular integrity. In addition, ADTRP functions as a fatty acid esters of hydroxy fatty acid (FAHFA)-specific hydrolase that is involved in energy metabolism. Current evidence suggests that ADTRP may play a role in the pathogenesis of atherosclerosis, CAD, obesity, and metabolic disorders. This review summarizes the current literature on ADTRP, with a focus on the peripheral actions of ADTRP, including expression, genetic variations, signaling pathways, and function. The evidence linking ADTRP and cardiometabolic diseases will also be discussed.
Collapse
Affiliation(s)
- Zizheng Kee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore
| | - Sze Min Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore
| | - Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 12, 1E Kent Ridge Road, 119228, Singapore.
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Kent Ridge, Singapore.
| |
Collapse
|
6
|
Huang Y, Sun M, Zhuang L, He J. Molecular Phylogenetic Analysis of the AIG Family in Vertebrates. Genes (Basel) 2021; 12:genes12081190. [PMID: 34440364 PMCID: PMC8394805 DOI: 10.3390/genes12081190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.
Collapse
Affiliation(s)
- Yuqi Huang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Minghao Sun
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Lenan Zhuang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (L.Z.); (J.H.); Tel.: +86-15-8361-28207 (L.Z.); +86-17-6818-74822 (J.H.)
| | - Jin He
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (L.Z.); (J.H.); Tel.: +86-15-8361-28207 (L.Z.); +86-17-6818-74822 (J.H.)
| |
Collapse
|