1
|
Liu J, Tan G, Wang S, Tong B, Wu Y, Zhang L, Jiang B. Artesunate induces HO-1-mediated cell cycle arrest and senescence to protect against ocular fibrosis. Int Immunopharmacol 2024; 141:112882. [PMID: 39151383 DOI: 10.1016/j.intimp.2024.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Recent research found artesunate could inhibit ocular fibrosis; however, the underlying mechanisms are not fully known. Since the ocular fibroblast is the main effector cell in fibrosis, we hypothesized that artesunate may exert its protective effects by inhibiting the fibroblasts proliferation. TGF-β1-induced ocular fibroblasts and glaucoma filtration surgery (GFS)-treated rabbits were used as ocular fibrotic models. Firstly, we analyzed fibrosis levels by assessing the expression of fibrotic marker proteins, and used Ki67 immunofluorescence, EdU staining, flow cytometry to determine cell cycle status, and SA-β-gal staining to assess cellular senescence levels. Then to predict target genes and pathways of artesunate, we analyzed the differentially expressed genes and enriched pathways through RNA-seq. Western blot and immunohistochemistry were used to detect the pathway-related proteins. Additionally, we validated the dependence of artesunate's effects on HO-1 expression through HO-1 siRNA. Moreover, DCFDA and MitoSOX fluorescence staining were used to examine ROS level. We found artesunate significantly inhibits the expression of fibrosis-related proteins, induces cell cycle arrest and cellular senescence. Knocking down HO-1 in fibroblasts with siRNA reverses these regulatory effects of artesunate. Mechanistic studies show that artesunate significantly inhibits the activation of the Cyclin D1/CDK4-pRB pathway, induces an increase in cellular and mitochondrial ROS levels and activates the Nrf2/HO-1 pathway. In conclusion, the present study identifies that artesunate induces HO-1 expression through ROS to activate the antioxidant Nrf2/HO-1 pathway, subsequently inhibits the cell cycle regulation pathway Cyclin D1/CDK4-pRB in an HO-1-dependent way, induces cell cycle arrest and senescence, and thereby resists periorbital fibrosis.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shutong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Boding Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Mkhize SA, Manilall A, Mokotedi L, Gunter S, Michel FS. Involvement of pentraxin-3 in the development of hypertension but not left ventricular hypertrophy in male spontaneously hypertensive rats. Physiol Rep 2024; 12:e70086. [PMID: 39414396 PMCID: PMC11483509 DOI: 10.14814/phy2.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Hypertension drives the development of concentric left ventricular hypertrophy (LVH). However, the relative contribution of pentraxin-3 (PTX-3), a novel marker for inflammatory cardiovascular disease, in the hypertrophic response to pressure overload has not been adequately elucidated. We investigated the role of PTX-3 in the development of LVH in spontaneously hypertensive rats (SHR), untreated and treated with either captopril (an ACE inhibitor) or hydralazine (a non-specific vasodilator). Three-month-old SHR received either 20 mg/kg/day hydralazine (SHR + H, n = 6), 40 mg/kg/day captopril (SHR + C, n = 6), or plain gelatine cubes (untreated SHR, n = 7) orally for 4 months. Wistar Kyoto rats (WKY, n = 7) were used as the normotensive controls. Blood pressure (BP) was measured using the tail-cuff method. Cardiac geometry and function were determined using M-mode echocardiography. Circulating concentrations of inflammatory markers were measured in plasma by ELISA. LV fibrosis and cardiomyocyte width were assessed by histology. Relative mRNA expression of PTX-3 was determined in the LV by RT-PCR. Untreated SHR exhibited greater systolic BP and relative wall thickness (RWT) compared to WKY. Captopril and hydralazine normalized BP but only captopril reversed RWT in SHR. Circulating PTX-3 and VCAM-1 levels were elevated in untreated SHR and reduced with captopril and hydralazine. Circulating PTX-3 was positively associated with systolic BP but lacked independent relations with indices of LVH. LV relative mRNA expression of PTX-3 was similar between the groups. PTX-3 may not be involved in the development of LVH in SHR, but plausibly reflects the localized inflammatory milieu associated with hypertension.
Collapse
Affiliation(s)
- Siluleko A. Mkhize
- Integrated Molecular Physiology Research Initiative, Faculty of Health Sciences, School of PhysiologyUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Ashmeetha Manilall
- Integrated Molecular Physiology Research Initiative, Faculty of Health Sciences, School of PhysiologyUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Lebogang Mokotedi
- Integrated Molecular Physiology Research Initiative, Faculty of Health Sciences, School of PhysiologyUniversity of the WitwatersrandJohannesburgSouth Africa
- Department of Physiology, School of MedicineSefako Makgatho Health Sciences UniversityPretoriaSouth Africa
| | - Sule Gunter
- Integrated Molecular Physiology Research Initiative, Faculty of Health Sciences, School of PhysiologyUniversity of the WitwatersrandJohannesburgSouth Africa
- Department of Health Sciences and MedicineBond UniversityGold CoastQueenslandAustralia
| | - Frederic S. Michel
- Integrated Molecular Physiology Research Initiative, Faculty of Health Sciences, School of PhysiologyUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
3
|
Yin Q, Tang TT, Lu XY, Ni WJ, Yin D, Zhang YL, Jiang W, Zhang Y, Li ZL, Wen Y, Gan WH, Zhang AQ, Lv LL, Wang B, Liu BC. Macrophage-derived exosomes promote telomere fragility and senescence in tubular epithelial cells by delivering miR-155. Cell Commun Signal 2024; 22:357. [PMID: 38987851 PMCID: PMC11238407 DOI: 10.1186/s12964-024-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated β-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.
Collapse
Affiliation(s)
- Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Xiao-Yu Lu
- Department of Pediatric Nephrology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wei-Jie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Di Yin
- Department of Nephrology, Taixing People's Hospital, Taixing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Yue Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Wei-Hua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ai-Qing Zhang
- Department of Pediatric Nephrology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87, Dingjiaqiao Road, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Wang F, Zhang Y, Gao M, Zeng X. TMEM16A inhibits renal tubulointerstitial fibrosis via Wnt/β-catenin signaling during hypertension nephropathy. Cell Signal 2024; 117:111088. [PMID: 38316267 DOI: 10.1016/j.cellsig.2024.111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND OBJECTIVE Hypertensive nephropathy is the second leading cause of end-stage renal disease, but its underlying pathogenesis remains unclear. Therefore, this study aimed to explore whether transmembrane protein 16 A (TMEM16A), the molecular basis of calcium-activated chloride channels (CaCC), is involved in the development and progression of hypertensive nephropathy. METHODS In vivo and in vitro experiments were conducted using a hypertensive murine model and human kidney proximal tubular epithelial cells (HK-2 cells), respectively. EXPERIMENTAL RESULTS The expression of TMEM16A was down-regulated in renal samples of hypertensive nephropathy patients and hypertensive model mice, accompanied by excessive deposition of extracellular matrix proteins (ECM) such as Fibronectin, Laminin, Collagen I and Collagen III, the up-regulation of α-smooth muscle actin (α-SMA) expression, and the decrease of E-cadherin. Overexpression of TMEM16A or knockdown of TMEM16A inhibited or promoted the expression of Wnt/β-catenin signaling pathway proteins Wnt3a, LRP5 and active β-catenin in HK-2 cells, preventing the epithelial-to-mesenchymal transition (EMT) of renal tubules, and the synthesis of ECM components. CONCLUSION In angiotensin II (Ang II)-induced hypertensive nephropathy, TMEM16A was identified as a key player inhibiting the detrimental changes in renal tubules, suggesting a potential avenue for mitigating renal damage in hypertensive nephropathy.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China; Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng 224000, China
| | - Yiqing Zhang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Min Gao
- Department of Pharmacy, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, China.
| | - Xuelin Zeng
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Creening and Translational Research, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
5
|
Tesch G, Ma F, Ozols E, Nikolic-Paterson D. Intervention treatment reducing cellular senescence inhibits tubulointerstitial fibrosis in diabetic mice following acute kidney injury. Clin Sci (Lond) 2024; 138:309-326. [PMID: 38391050 PMCID: PMC10914710 DOI: 10.1042/cs20231698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 02/24/2024]
Abstract
Senescence of kidney tubules leads to tubulointerstitial fibrosis (TIF). Proximal tubular epithelial cells undergo stress-induced senescence during diabetes and episodes of acute kidney injury (AKI), and combining these injuries promotes the progression of diabetic kidney disease (DKD). Since TIF is crucial to progression of DKD, we examined the therapeutic potential of targeting senescence with a senolytic drug (HSP90 inhibitor) and/or a senostatic drug (ASK1 inhibitor) in a model of TIF in which AKI is superimposed on diabetes. After 8 weeks of streptozotocin-induced diabetes, mice underwent bilateral clamping of renal pedicles to induce mild AKI, followed by 28 days of reperfusion. Groups of mice (n=10-12) received either vehicle, HSP90 inhibitor (alvespimycin), ASK1 inhibitor (GS-444217), or both treatments. Vehicle-treated mice displayed tubular injury at day 3 and extensive tubular cell senescence at day 10, which remained unresolved at day 28. Markers of senescence (Cdkn1a and Cdkn2a), inflammation (Cd68, Tnf, and Ccl2), and TIF (Col1a1, Col4a3, α-Sma/Acta2, and Tgfb1) were elevated at day 28, coinciding with renal function impairment. Treatment with alvespimycin alone reduced kidney senescence and levels of Col1a1, Acta2, Tgfb1, and Cd68; however, further treatment with GS-444217 also reduced Col4a3, Tnf, Ccl2, and renal function impairment. Senolytic therapy can inhibit TIF during DKD, but its effectiveness can be improved by follow-up treatment with a senostatic inhibitor, which has important implications for treating progressive DKD.
Collapse
Affiliation(s)
- Gregory H. Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - Frank Y. Ma
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - Elyce Ozols
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - David J. Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| |
Collapse
|