1
|
Li L, Zhao S, Liu X, Xu Z, Li D, Dai X. Lyophilized powder of calf bone marrow hydrolysate liposomes improved renal anemia: In vitro and in vivo evaluation. PLoS One 2024; 19:e0314811. [PMID: 39724079 DOI: 10.1371/journal.pone.0314811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
This study aimed to find whether oral administration of calf bone marrow hydrolysate liposomes (CBMHL) can improve renal anemia. Calf bone marrow was defatted, papain hydrolyzed, liposomalized and lyophilized. Its hematopoietic ability was proved by the colony formation experiment of umbilical cord blood hematopoietic stem cells in vitro. The rat model of renal anemia was established by adenine intragastric administration, and different concentrations of CBMHL were intragastricly administrated. Blood routine and serological indexes, transcription levels of hematopoietic factors and renal pathology were detected. From the appearance, redispersability, water content, liposome indexes and stability of Lyophilized powder of CBMHL, it could be concluded that the quality of freeze-dried CBMHL powder under this freeze-drying process was good. Compared with the control group, the burst forming unit-erythroid (BFU-E) in the CBMHL group was larger and the number of colonies increased significantly in the colony formation experiment (P < 0.05). The results of lyophilized powder of CBMHL co-culture with human adipose mesenchymal stem cells (MSCs) and human cytokine-induced killer (CIK) cells showed that the lyophilized powder of CBMHL had no potential toxicity and allergic reaction in vitro. Compared with the Model Group, the red blood cell (RBC) count, hemoglobin (HB) content and hematokrit (HCT) of rats blood routine in the Model+high doses of CBMHL Group (Model+H-CBMHL Group) increased significantly (P < 0.05). Serum erythropoietin (EPO) and glutathione (GSH) levels increased significantly (P < 0.05), while serum creatinine (Cr) levels decreased significantly(P < 0.05). The transcription level of Epo in kidney increased significantly (P < 0.05), the transcription levels of erythropoietin receptor (Epor) in bone marrow and interleukin 6 (Il6) in spleen were significantly increased (P < 0.01). The fragility of red blood cells decreased significantly, and the pathological structure of kidney improved significantly. It was proved that lyophilized powder of CBMHL could effectively enhance the hematopoietic ability of rats with renal anemia and protect the kidney structure and function.
Collapse
Affiliation(s)
- Li Li
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Shasha Zhao
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Xiaodun Liu
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Zhe Xu
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Dong Li
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| | - Xiaoyu Dai
- Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China
| |
Collapse
|
2
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
3
|
Verkerke ARP, Shi X, Li M, Higuchi Y, Yamamuro T, Katoh D, Nishida H, Auger C, Abe I, Gerszten RE, Kajimura S. SLC25A48 controls mitochondrial choline import and metabolism. Cell Metab 2024; 36:2156-2166.e9. [PMID: 39111307 DOI: 10.1016/j.cmet.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Choline is an essential nutrient for the biosynthesis of phospholipids, neurotransmitters, and one-carbon metabolism with a critical step being its import into mitochondria. However, the underlying mechanisms and biological significance remain poorly understood. Here, we report that SLC25A48, a previously uncharacterized mitochondrial inner-membrane carrier protein, controls mitochondrial choline transport and the synthesis of choline-derived methyl donors. We found that SLC25A48 was required for brown fat thermogenesis, mitochondrial respiration, and mitochondrial membrane integrity. Choline uptake into the mitochondrial matrix via SLC25A48 facilitated the synthesis of betaine and purine nucleotides, whereas loss of SLC25A48 resulted in increased production of mitochondrial reactive oxygen species and imbalanced mitochondrial lipids. Notably, human cells carrying a single nucleotide polymorphism on the SLC25A48 gene and cancer cells lacking SLC25A48 exhibited decreased mitochondrial choline import, increased oxidative stress, and impaired cell proliferation. Together, this study demonstrates that SLC25A48 regulates mitochondrial choline catabolism, bioenergetics, and cell survival.
Collapse
Affiliation(s)
- Anthony R P Verkerke
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark Li
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| | - Yusuke Higuchi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| | - Daisuke Katoh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| | - Hiroshi Nishida
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| | - Ichitaro Abe
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA; Department of Cardiology and Clinical Examination, Oita University, Faculty of Medicine, Oita, Japan
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Zheng X, Lu X, Li Q, Gong S, Chen B, Xie Q, Yan F, Li J, Su Z, Liu Y, Guo Z, Chen J, Li Y. Discovery of 2,8-dihydroxyadenine in HUA patients with uroliths and biomarkers for its associated nephropathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167051. [PMID: 38336103 DOI: 10.1016/j.bbadis.2024.167051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Currently, it is acknowledged that gout is caused by uric acid (UA). However, some studies have revealed no correlation between gout and UA levels, and growing evidence suggests that 2,8-dihydroxyadenine (2,8-DHA), whose structural formula is similar to UA but is less soluble, may induce gout. Hence, we hypothesized that uroliths from hyperuricemia (HUA) patients, which is closely associated with gout, may contain 2,8-DHA. In this study, 2,8-DHA in uroliths and serum of HUA patients were determined using HPLC. Moreover, bioinformatics was used to investigate the pathogenic mechanisms of 2,8-DHA nephropathy. Subsequently, a mouse model of 2,8-DHA nephropathy established by the gavage administration of adenine, as well as a model of injured HK-2 cells induced by 2,8-DHA were used to explore the pathogenesis of 2,8-DHA nephropathy. Interestingly, 2,8-DHA could readily deposit in the cortex of the renal tubules, and was found in the majority of these HUA patients. Additionally, the differentially expressed genes between 2,8-DHA nephropathy mice and control mice were found to be involved in inflammatory reactions. Importantly, CCL2 and IL-1β genes had the maximum degree, closeness, and betweenness centrality scores. The expressions of CCL2 and IL-1β genes were significantly increased in the serum of 24 HUA patients with uroliths, indicating that they may be significant factors for 2,8-DHA nephropathy. Further analysis illustrated that oxidative damage and inflammation were the crucial processes of 2,8-DHA renal injury, and CCL2 and IL-1β genes were verified to be essential biomarkers for 2,8-DHA nephropathy. These findings revealed further insights into 2,8-DHA nephropathy, and provided new ideas for its diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Xiaowei Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Qiuxian Li
- Clinical Laboratory Department, Guangzhou Panyu Central Hospital, Guangzhou 511486, China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qingfeng Xie
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Fang Yan
- The Second Clinical College Guangdong University of Chinese Medicine, Guangzhou 510120, China
| | - Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhonghui Guo
- Clinical Laboratory Department, Guangzhou Panyu Central Hospital, Guangzhou 511486, China.
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| |
Collapse
|