1
|
Dijkema FM, Escarpizo‐Lorenzana MI, Nordentoft MK, Rabe HC, Sahin C, Landreh M, Branca RM, Sørensen ES, Christensen B, Prestel A, Teilum K, Winther JR. A suicidal and extensively disordered luciferase with a bright luminescence. Protein Sci 2024; 33:e5115. [PMID: 39023083 PMCID: PMC11255867 DOI: 10.1002/pro.5115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Gaussia luciferase (GLuc) is one of the most luminescent luciferases known and is widely used as a reporter in biochemistry and cell biology. During catalysis, GLuc undergoes inactivation by irreversible covalent modification. The mechanism by which GLuc generates luminescence and how it becomes inactivated are however not known. Here, we show that GLuc unlike other enzymes has an extensively disordered structure with a minimal hydrophobic core and no apparent binding pocket for the main substrate, coelenterazine. From an alanine scan, we identified two Arg residues required for light production. These residues separated with an average of about 22 Å and a major structural rearrangement is required if they are to interact with the substrate simultaneously. We furthermore show that in addition to coelenterazine, GLuc also can oxidize furimazine, however, in this case without production of light. Both substrates result in the formation of adducts with the enzyme, which eventually leads to enzyme inactivation. Our results demonstrate that a rigid protein structure and substrate-binding site are no prerequisites for high enzymatic activity and specificity. In addition to the increased understanding of enzymes in general, the findings will facilitate future improvement of GLuc as a reporter luciferase.
Collapse
Affiliation(s)
- Fenne Marjolein Dijkema
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | | | - Hanna Christin Rabe
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Cagla Sahin
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Rui Mamede Branca
- Science for Life Laboratory, Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | - Esben Skipper Sørensen
- Department of Molecular Biology and Genetics, Section for Cellular Health, Intervention and NutritionAarhus UniversityAarhus CentrumDenmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Section for Cellular Health, Intervention and NutritionAarhus UniversityAarhus CentrumDenmark
| | - Andreas Prestel
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kaare Teilum
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jakob Rahr Winther
- The Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
2
|
Bento R, Scheller J, Parekkadan B. Intratumoral Delivery of Genetically Engineered Anti-IL-6 Trans-signaling Therapeutics. Mol Biotechnol 2024:10.1007/s12033-024-01230-6. [PMID: 38980514 DOI: 10.1007/s12033-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Interleukin-6 (IL-6) is a highly pro-inflammatory cytokine involved in the etiopathology of several inflammatory diseases and cancer. As so, the inhibition of IL-6 signaling pathways has emerged as an attractive therapeutic avenue for the treatment of several chronic diseases. Since IL-6 trans-signaling was described as the pathological branch of IL-6, selective inhibitors were developed. Next-generation variants with increased trans-signaling specificity and potency emerged as great candidates for the treatment of several diseases, with reduced off-target effects. The highly time-consuming and costly processes involving recombinant protein production, however, have hampered the progress of anti-cytokine pharmaceuticals in clinic so far. Herein, we developed gene therapeutic modalities of IL-6-trans-signaling inhibitors as alternatives for sustained recombinant protein secretion. By using an IL-6-dependent lymphoma cell line and xenograft tumor model, we demonstrated the superior inhibitory potential of second-generation anti-IL-6 trans-signaling therapeutic. We compared the efficiency of distinct gene delivery modalities using a bioluminescent biomarker probe and observed consistent protein production via cell-based delivery. When delivered intratumorally, genetically engineered sgp130FlyRFc-secreting cells significantly reduced tumor burden and increased animal survival, representing a promising therapeutic avenue to be explored in clinically relevant gene delivery applications.
Collapse
Affiliation(s)
- Raphaela Bento
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Murad M, Chen Y, Iaria J, Fonseca Teixeira A, Zhu HJ. A Novel Method for the Early Detection of Single Circulating, Metastatic and Self-Seeding Cancer Cells in Orthotopic Breast Cancer Mouse Models. Cells 2024; 13:1166. [PMID: 39056749 PMCID: PMC11275056 DOI: 10.3390/cells13141166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Metastasis is the main cause of cancer-related deaths, but efficient targeted therapies against metastasis are still missing. Major gaps exist in our understanding of the metastatic cascade, as existing methods cannot combine sensitivity, robustness, and practicality to dissect cancer progression. Addressing this issue requires improved strategies to distinguish early metastatic colonization from metastatic outgrowth. METHODS Luciferase-labelled MDA-MB-231, MCF7, and 4T1 breast cancer cells were spiked into samples from tumour-naïve mice to establish the limit of detection for disseminated tumour cells. Luciferase-labelled breast cancer cells (±unlabelled cancer-associated fibroblasts; CAFs) were orthotopically implanted in immunocompromised mice. An ex vivo luciferase assay was used to quantify tumour cell dissemination. RESULTS In vitro luciferase assay confirmed a linear and positive correlation between cancer cell numbers and the bioluminescence detected at single cell level in blood, brain, lung, liver, and mammary fat pad samples. Remarkably, single luciferase-labelled cancer cells were detectable in all of these sites, as the bioluminescence quantified in the analysed samples was substantially higher than background levels. Ex vivo, circulating tumour cells, metastasis, and tumour self-seeding were detected in all samples from animals implanted with highly metastatic luciferase-labelled MDA-MB-231 cells. In turn, detection of poorly metastatic luciferase-labelled MCF7 cells was scarce but significantly enhanced upon co-implantation with CAFs as early as 20 days after the experiment was initiated. CONCLUSIONS These results demonstrate the feasibility of using an ultrasensitive luciferase-based method to dissect the mechanisms of early metastatic colonization to improving the development of antimetastatic therapies.
Collapse
Affiliation(s)
- Muhammad Murad
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
| | - Yanjiang Chen
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Josephine Iaria
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| |
Collapse
|
4
|
Magalhães CM, Esteves da Silva JCG, Pinto da Silva L. Investigation of the Chemiluminescent Reaction of a Fluorinated Analog of Marine Coelenterazine. MATERIALS (BASEL, SWITZERLAND) 2024; 17:868. [PMID: 38399119 PMCID: PMC10890627 DOI: 10.3390/ma17040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Bioluminescence (BL) and chemiluminescence (CL) are remarkable processes in which light is emitted due to (bio)chemical reactions. These reactions have attracted significant attention for various applications, such as biosensing, bioimaging, and biomedicine. Some of the most relevant and well-studied BL/CL systems are that of marine imidazopyrazine-based compounds, among which Coelenterazine is a prime example. Understanding the mechanisms behind efficient chemiexcitation is essential for the optimization and development of practical applications for these systems. Here, the CL of a fluorinated Coelenterazine analog was studied using experimental and theoretical approaches to obtain insight into these processes. Experimental analysis revealed that CL is more efficient under basic conditions than under acidic ones, which could be attributed to the higher relative chemiexcitation efficiency of an anionic dioxetanone intermediate over a corresponding neutral species. However, theoretical calculations indicated that the reactions of both species are similarly associated with both electron and charge transfer processes, which are typically used to explain efficiency chemiexcitation. So, neither process appears to be able to explain the relative chemiexcitation efficiencies observed. In conclusion, this study provides further insight into the mechanisms behind the chemiexcitation of imidazopyrazinone-based systems.
Collapse
Affiliation(s)
| | | | - Luís Pinto da Silva
- Centro de Investigação em Química (CIQUP), Instituto de Ciências Moleculares (IMS), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (J.C.G.E.d.S.)
| |
Collapse
|
5
|
Ohmuro-Matsuyama Y, Matsui H, Kanai M, Furuta T. Glow-type conversion and characterization of a minimal luciferase via mutational analyses. FEBS J 2023; 290:5554-5565. [PMID: 37622174 DOI: 10.1111/febs.16937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Luciferases are widely used as reporter proteins in various fields. Recently, we developed a minimal bright luciferase, picALuc, via partial deletion of the artificial luciferase (ALuc) derived from copepods luciferases. However, the structures of copepod luciferases in the substrate-bound state remain unknown. Moreover, as suggested by structural modeling, picALuc has a larger active site cavity, unlike that in other copepod luciferases. Here, to explore the bioluminescence mechanism of picALuc and its luminescence properties, we conducted multiple mutational analyses, and identified residues and regions important for catalysis and bioluminescence. Mutations of residues likely involved in catalysis (S33, H34, and D55) markedly reduced bioluminescence, whereas that of residue (E50) (near the substrate in the structural model) enhanced luminescence intensity. Furthermore, deletion mutants (Δ70-Δ78) in the loop region (around I73) exhibited longer luminescence lifetimes (~ 30 min) and were reactivated multiple times upon re-addition of the substrate. Due to the high thermostability of picALuc, one of its representative mutant (Δ74), was able to be reused, that is, luminescence recycling, for day-scale time at room temperature. These findings provide important insights into picALuc bioluminescence mechanism and copepod luciferases and may help with sustained observations in a variety of applications.
Collapse
Affiliation(s)
| | - Hayato Matsui
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Masaki Kanai
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Li EH, Spaman L, Tejero R, Huang YJ, Ramelot TA, Fraga KJ, Prestegard JH, Kennedy MA, Montelione GT. Blind Assessment of Monomeric AlphaFold2 Protein Structure Models with Experimental NMR Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525096. [PMID: 36712039 PMCID: PMC9882346 DOI: 10.1101/2023.01.22.525096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent advances in molecular modeling of protein structures are changing the field of structural biology. AlphaFold-2 (AF2), an AI system developed by DeepMind, Inc., utilizes attention-based deep learning to predict models of protein structures with high accuracy relative to structures determined by X-ray crystallography and cryo-electron microscopy (cryoEM). Comparing AF2 models to structures determined using solution NMR data, both high similarities and distinct differences have been observed. Since AF2 was trained on X-ray crystal and cryoEM structures, we assessed how accurately AF2 can model small, monomeric, solution protein NMR structures which (i) were not used in the AF2 training data set, and (ii) did not have homologous structures in the Protein Data Bank at the time of AF2 training. We identified nine open source protein NMR data sets for such "blind" targets, including chemical shift, raw NMR FID data, NOESY peak lists, and (for 1 case) 15 N- 1 H residual dipolar coupling data. For these nine small (70 - 108 residues) monomeric proteins, we generated AF2 prediction models and assessed how well these models fit to these experimental NMR data, using several well-established NMR structure validation tools. In most of these cases, the AF2 models fit the NMR data nearly as well, or sometimes better than, the corresponding NMR structure models previously deposited in the Protein Data Bank. These results provide benchmark NMR data for assessing new NMR data analysis and protein structure prediction methods. They also document the potential for using AF2 as a guiding tool in protein NMR data analysis, and more generally for hypothesis generation in structural biology research. Highlights AF2 models assessed against NMR data for 9 monomeric proteins not used in training.AF2 models fit NMR data almost as well as the experimentally-determined structures. RPF-DP, PSVS , and PDBStat software provide structure quality and RDC assessment. RPF-DP analysis using AF2 models suggests multiple conformational states.
Collapse
Affiliation(s)
- Ethan H. Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Laura Spaman
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Roberto Tejero
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Yuanpeng Janet Huang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Theresa A. Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Keith J. Fraga
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 USA
| | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|