1
|
Mandal K, Tomar SK, Kumar Santra M. Decoding the ubiquitin language: Orchestrating transcription initiation and gene expression through chromatin remodelers and histones. Gene 2024; 904:148218. [PMID: 38307220 DOI: 10.1016/j.gene.2024.148218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Eukaryotic transcription is a finely orchestrated process and it is controlled by transcription factors as well as epigenetic regulators. Transcription factors and epigenetic regulators undergo different types of posttranslational modifications including ubiquitination to control transcription process. Ubiquitination, traditionally associated with protein degradation, has emerged as a crucial contributor to the regulation of chromatin structure through ubiquitination of histone and chromatin remodelers. Ubiquitination introduces new layers of intricacy to the regulation of transcription initiation through controlling the equilibrium between euchromatin and heterochromatin states. Nucleosome, the fundamental units of chromatin, spacing in euchromatin and heterochromatin states are regulated by histone modification and chromatin remodeling complexes. Chromatin remodeling complexes actively sculpt the chromatin architecture and thereby influence the transcriptional states of genes. Therefore, understanding the dynamic behavior of nucleosome spacing is critical as it impacts various cellular functions through controlling gene expression profiles. In this comprehensive review, we discussed the intricate interplay between ubiquitination and transcription initiation, and illuminated the underlying molecular mechanisms that occur in a variety of biological contexts. This exploration sheds light on the complex regulatory networks that govern eukaryotic transcription, providing important insights into the fine orchestration of gene expression and chromatin dynamics.
Collapse
Affiliation(s)
- Kartik Mandal
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Shiva Kumar Tomar
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
2
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
3
|
Meng Y, Ni Y, Li Z, Jiang T, Sun T, Li Y, Gao X, Li H, Suo C, Li C, Yang S, Lan T, Liao G, Liu T, Wang P, Ding C. Interplay between acetylation and ubiquitination of imitation switch chromatin remodeler Isw1 confers multidrug resistance in Cryptococcus neoformans. eLife 2024; 13:e85728. [PMID: 38251723 PMCID: PMC10834027 DOI: 10.7554/elife.85728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/21/2024] [Indexed: 01/23/2024] Open
Abstract
Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans.
Collapse
Affiliation(s)
- Yang Meng
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Yue Ni
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Zhuoran Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tianhang Jiang
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tianshu Sun
- Department of Scientific Research, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Xindi Gao
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology, The First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Chenhao Suo
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Chao Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Sheng Yang
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tian Lan
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | - Tongbao Liu
- Medical Research Institute, Southwest UniversityChongqingChina
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New OrleansNew OrleansUnited States
| | - Chen Ding
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| |
Collapse
|
4
|
Li Y, Gong H, Wang P, Zhu Y, Peng H, Cui Y, Li H, Liu J, Wang Z. The emerging role of ISWI chromatin remodeling complexes in cancer. J Exp Clin Cancer Res 2021; 40:346. [PMID: 34736517 PMCID: PMC8567610 DOI: 10.1186/s13046-021-02151-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Disordered chromatin remodeling regulation has emerged as an essential driving factor for cancers. Imitation switch (ISWI) family are evolutionarily conserved ATP-dependent chromatin remodeling complexes, which are essential for cellular survival and function through multiple genetic and epigenetic mechanisms. Omics sequencing and a growing number of basic and clinical studies found that ISWI family members displayed widespread gene expression and genetic status abnormalities in human cancer. Their aberrant expression is closely linked to patient outcome and drug response. Functional or componential alteration in ISWI-containing complexes is critical for tumor initiation and development. Furthermore, ISWI-non-coding RNA regulatory networks and some non-coding RNAs derived from exons of ISWI member genes play important roles in tumor progression. Therefore, unveiling the transcriptional regulation mechanism underlying ISWI family sparked a booming interest in finding ISWI-based therapies in cancer. This review aims at describing the current state-of-the-art in the role of ISWI subunits and complexes in tumorigenesis, tumor progression, immunity and drug response, and presenting deep insight into the physiological and pathological implications of the ISWI transcription machinery in cancers.
Collapse
Affiliation(s)
- Yanan Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Han Gong
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Pan Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yajuan Cui
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Heng Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
5
|
The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution. Sci Rep 2021; 11:4195. [PMID: 33602956 PMCID: PMC7892562 DOI: 10.1038/s41598-021-82842-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Isw1 and Chd1 are ATP-dependent nucleosome-spacing enzymes required to establish regular arrays of phased nucleosomes near transcription start sites of yeast genes. Cells lacking both Isw1 and Chd1 have extremely disrupted chromatin, with weak phasing, irregular spacing and a propensity to form close-packed dinucleosomes. The Isw1 ATPase subunit occurs in two different remodeling complexes: ISW1a (composed of Isw1 and Ioc3) and ISW1b (composed of Isw1, Ioc2 and Ioc4). The Ioc4 subunit of ISW1b binds preferentially to the H3-K36me3 mark. Here we show that ISW1b is primarily responsible for setting nucleosome spacing and resolving close-packed dinucleosomes, whereas ISW1a plays only a minor role. ISW1b and Chd1 make additive contributions to dinucleosome resolution, such that neither enzyme is capable of resolving all dinucleosomes on its own. Loss of the Set2 H3-K36 methyltransferase partly phenocopies loss of Ioc4, resulting in increased dinucleosome levels with only a weak effect on nucleosome spacing, suggesting that Set2-mediated H3-K36 trimethylation contributes to ISW1b-mediated dinucleosome separation. The H4 tail domain is required for normal nucleosome spacing but not for dinucleosome resolution. We conclude that the nucleosome spacing and dinucleosome resolving activities of ISW1b and Chd1 are critical for normal global chromatin organisation.
Collapse
|
6
|
Case KC, Salsaa M, Yu W, Greenberg ML. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handb Exp Pharmacol 2020; 259:221-260. [PMID: 30591968 DOI: 10.1007/164_2018_181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Buitrago D, Codó L, Illa R, de Jorge P, Battistini F, Flores O, Bayarri G, Royo R, Del Pino M, Heath S, Hospital A, Gelpí JL, Heath IB, Orozco M. Nucleosome Dynamics: a new tool for the dynamic analysis of nucleosome positioning. Nucleic Acids Res 2019; 47:9511-9523. [PMID: 31504766 PMCID: PMC6765203 DOI: 10.1093/nar/gkz759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 02/03/2023] Open
Abstract
We present Nucleosome Dynamics, a suite of programs integrated into a virtual research environment and created to define nucleosome architecture and dynamics from noisy experimental data. The package allows both the definition of nucleosome architectures and the detection of changes in nucleosomal organization due to changes in cellular conditions. Results are displayed in the context of genomic information thanks to different visualizers and browsers, allowing the user a holistic, multidimensional view of the genome/transcriptome. The package shows good performance for both locating equilibrium nucleosome architecture and nucleosome dynamics and provides abundant useful information in several test cases, where experimental data on nucleosome position (and for some cases expression level) have been collected for cells under different external conditions (cell cycle phase, yeast metabolic cycle progression, changes in nutrients or difference in MNase digestion level). Nucleosome Dynamics is a free software and is provided under several distribution models.
Collapse
Affiliation(s)
- Diana Buitrago
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Laia Codó
- Barcelona Supercomputing Center (BSC), Jordi Girona 31, Barcelona 08028. Spain
| | - Ricard Illa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Pau de Jorge
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Oscar Flores
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Genis Bayarri
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Jordi Girona 31, Barcelona 08028. Spain
| | - Marc Del Pino
- Barcelona Supercomputing Center (BSC), Jordi Girona 31, Barcelona 08028. Spain
| | - Simon Heath
- Centro Nacional de Análisis Genómico (CNAG-CRG), Centre de Regulacio Genómico (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Josep Lluís Gelpí
- Barcelona Supercomputing Center (BSC), Jordi Girona 31, Barcelona 08028. Spain.,Departament de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain
| | - Isabelle Brun Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain.,Departament de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain
| |
Collapse
|
8
|
Huang M, Kao KC. Identifying novel genetic determinants for oxidative stress tolerance in Candida glabrata via adaptive laboratory evolution. Yeast 2018; 35:605-618. [PMID: 30141215 DOI: 10.1002/yea.3352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022] Open
Abstract
Candida glabrata (C glabrata) is an important yeast of industrial and medical significance. Resistance to oxidative stress is an important trait affecting its robustness as a production host or virulence as a pathogenic agent, but current understanding of resistance mechanisms is still limited in this fungus. In this study, we rapidly evolved C glabrata population to adapt to oxidative challenge (from 80mM to 350mM of H2 O2 ) through short-term adaptive laboratory evolution. Adaptive mutants were isolated from evolved populations and subjected to phenotypic and omics analyses to identify potential mechanisms of tolerance to H2 O2 . Phenotypic characterizations revealed faster detoxification of H2 O2 and ability to initiate growth at a higher concentration of the oxidant in the isolated adaptive mutants compared with the wild type. Genome resequencing and genome-wide transcriptome analysis revealed multiple genetic determinants (eg, CAGL0E01243g, CAGL0F06831g, and CAGL0C00385g) that potentially contribute to enhanced H2 O2 resistance. Subsequent experimental verification confirmed that CgCth2 (CAGL0E01243g) and CgMga2 (CAGL0F06831g) are important in C glabrata tolerance to oxidative stress. Transcriptome profiling of adaptive mutants and bioinformatic analysis suggest that NADPH regeneration, modulation of membrane composition, cell wall remodeling, and/or global regulatory changes are involved in C glabrata tolerance to H2 O2 .
Collapse
Affiliation(s)
- Mian Huang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Katy C Kao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| |
Collapse
|
9
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
10
|
The chromatin remodeling Isw1a complex is regulated by SUMOylation. Biochem J 2017; 474:3455-3469. [PMID: 28899943 DOI: 10.1042/bcj20170172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 12/28/2022]
Abstract
The ISWI class of proteins consists of a family of chromatin remodeling ATPases that is ubiquitous in eukaryotes and predominantly functions to slide nucleosomes laterally. The yeast Saccharomyces cerevisiae Isw1 partners with several non-essential alternative subunits - Ioc2, Ioc3, or Ioc4 - to form two distinct complexes Isw1a and Isw1b. Besides its ATPase domain, Isw1 presents a C-terminal region formed by HAND, SANT, and SLIDE domains responsible for interaction with the Ioc proteins and optimal association of Isw1 to chromatin. Despite diverse studies on the functions of the Isw1-containing complexes, molecular evidence for a regulation of this chromatin remodeling ATPase is still elusive. Results presented here indicate that Isw1 is not only ubiquitylated but also strongly SUMOylated on multiple lysine residues by the redundant Siz1/Siz2 SUMO E3 ligases. However, Isw1 is a poor substrate of the Ulp1 and Ulp2 SUMO proteases, thus resulting in a high level of modification. Extensive site-directed mutagenesis allowed us to identify the major SUMOylation sites and develop a SUMO-defective mutant of Isw1. Using this molecular tool, we show that SUMOylation of Isw1 specifically facilitates and/or stabilizes its interaction with its cofactor Ioc3 and consequently the efficient recruitment of the Isw1-Ioc3 complex onto chromatin. Together these data reveal a new regulatory mechanism for this fascinating remodeling factor.
Collapse
|
11
|
Dargemont C, Babour A. Novel functions for chromatin dynamics in mRNA biogenesis beyond transcription. Nucleus 2017; 8:482-488. [PMID: 28816581 DOI: 10.1080/19491034.2017.1342916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The first step of gene expression results in the production of mRNA ribonucleoparticles (mRNPs) that are exported to the cytoplasm via the NPC for translation into the cytoplasm. During this process, the mRNA molecule synthesized by RNA polymerase II (Pol II) undergoes extensive maturation, folding and packaging events that are intimately coupled to its synthesis. All these events take place in a chromatin context and it is therefore not surprising that a growing number of studies recently reported specific contributions of chromatin dynamics to various steps of mRNP biogenesis. In this extra view, we replace our recent findings highlighting the contribution of the yeast chromatin remodeling complex ISW1 to nuclear mRNA quality control in the context of the recent literature.
Collapse
Affiliation(s)
- Catherine Dargemont
- a Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212 , Hôpital St. Louis 1, Paris , France
| | - Anna Babour
- a Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212 , Hôpital St. Louis 1, Paris , France
| |
Collapse
|
12
|
Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 2017; 18:548-562. [PMID: 28537572 DOI: 10.1038/nrm.2017.47] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in genomics technology have provided the means to probe myriad chromatin interactions at unprecedented spatial and temporal resolution. This has led to a profound understanding of nucleosome organization within the genome, revealing that nucleosomes are highly dynamic. Nucleosome dynamics are governed by a complex interplay of histone composition, histone post-translational modifications, nucleosome occupancy and positioning within chromatin, which are influenced by numerous regulatory factors, including general regulatory factors, chromatin remodellers, chaperones and polymerases. It is now known that these dynamics regulate diverse cellular processes ranging from gene transcription to DNA replication and repair.
Collapse
|
13
|
The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 2017; 167:1201-1214.e15. [PMID: 27863241 DOI: 10.1016/j.cell.2016.10.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.
Collapse
|
14
|
Abstract
Chromatin is a highly dynamic structure that imparts structural organization to the genome and regulates the gene expression underneath. The decade long research in deciphering the significance of epigenetics in maintaining cellular integrity has embarked the focus on chromatin remodeling enzymes. These drivers have been categorized as readers, writers and erasers with each having significance of their own. Largely, on the basis of structure, ATP dependent chromatin remodelers have been grouped into 4 families; SWI/SNF, ISWI, IN080 and CHD. It is still unclear to what degree these enzymes are swayed by local DNA sequences when shifting a nucleosome to different positions. The ability of regulating active and repressive transcriptional state via open and close chromatin architecture has been well studied however, the significance of chromatin remodelers in regulating transcription at each step i.e. initiation, elongation and termination require further attention. The authors have highlighted the significance and role of different chromatin remodelers in transcription, DNA repair and histone variant deposition.
Collapse
Affiliation(s)
- Monica Tyagi
- a Kusuma School of Biological Sciences, Indian Institute of Technology Delhi Hauz Khas , New Delhi , India
| | | | | | | |
Collapse
|
15
|
Rizzetto S, Priami C, Csikász-Nagy A. Qualitative and Quantitative Protein Complex Prediction Through Proteome-Wide Simulations. PLoS Comput Biol 2015; 11:e1004424. [PMID: 26492574 PMCID: PMC4619657 DOI: 10.1371/journal.pcbi.1004424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/22/2015] [Indexed: 12/18/2022] Open
Abstract
Despite recent progress in proteomics most protein complexes are still unknown. Identification of these complexes will help us understand cellular regulatory mechanisms and support development of new drugs. Therefore it is really important to establish detailed information about the composition and the abundance of protein complexes but existing algorithms can only give qualitative predictions. Herein, we propose a new approach based on stochastic simulations of protein complex formation that integrates multi-source data--such as protein abundances, domain-domain interactions and functional annotations--to predict alternative forms of protein complexes together with their abundances. This method, called SiComPre (Simulation based Complex Prediction), achieves better qualitative prediction of yeast and human protein complexes than existing methods and is the first to predict protein complex abundances. Furthermore, we show that SiComPre can be used to predict complexome changes upon drug treatment with the example of bortezomib. SiComPre is the first method to produce quantitative predictions on the abundance of molecular complexes while performing the best qualitative predictions. With new data on tissue specific protein complexes becoming available SiComPre will be able to predict qualitative and quantitative differences in the complexome in various tissue types and under various conditions.
Collapse
Affiliation(s)
- Simone Rizzetto
- The Microsoft Research-University of Trento Centre for Computational Systems Biology, Rovereto, Italy
| | - Corrado Priami
- The Microsoft Research-University of Trento Centre for Computational Systems Biology, Rovereto, Italy
- Department of Mathematics, University of Trento, Povo (TN), Italy
- * E-mail: (CP); (ACN)
| | - Attila Csikász-Nagy
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Randall Division of Cell and Molecular Biophysics and Institute for Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom
- * E-mail: (CP); (ACN)
| |
Collapse
|
16
|
Stanne T, Narayanan MS, Ridewood S, Ling A, Witmer K, Kushwaha M, Wiesler S, Wickstead B, Wood J, Rudenko G. Identification of the ISWI Chromatin Remodeling Complex of the Early Branching Eukaryote Trypanosoma brucei. J Biol Chem 2015; 290:26954-26967. [PMID: 26378228 PMCID: PMC4646403 DOI: 10.1074/jbc.m115.679019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 12/25/2022] Open
Abstract
ISWI chromatin remodelers are highly conserved in eukaryotes and are important for the assembly and spacing of nucleosomes, thereby controlling transcription initiation and elongation. ISWI is typically associated with different subunits, forming specialized complexes with discrete functions. In the unicellular parasite Trypanosoma brucei, which causes African sleeping sickness, TbISWI down-regulates RNA polymerase I (Pol I)-transcribed variant surface glycoprotein (VSG) gene expression sites (ESs), which are monoallelically expressed. Here, we use tandem affinity purification to determine the interacting partners of TbISWI. We identify three proteins that do not show significant homology with known ISWI-associated partners. Surprisingly, one of these is nucleoplasmin-like protein (NLP), which we had previously shown to play a role in ES control. In addition, we identify two novel ISWI partners, regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP), both containing protein motifs typically found on chromatin proteins. Knockdown of RCCP or FYRP in bloodstream form T. brucei results in derepression of silent variant surface glycoprotein ESs, as had previously been shown for TbISWI and NLP. All four proteins are expressed and interact with each other in both major life cycle stages and show similar distributions at Pol I-transcribed loci. They are also found at Pol II strand switch regions as determined with ChIP. ISWI, NLP, RCCP, and FYRP therefore appear to form a single major ISWI complex in T. brucei (TbIC). This reduced complexity of ISWI regulation and the presence of novel ISWI partners highlights the early divergence of trypanosomes in evolution.
Collapse
Affiliation(s)
- Tara Stanne
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Sophie Ridewood
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Alexandra Ling
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Kathrin Witmer
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Manish Kushwaha
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Simone Wiesler
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Bill Wickstead
- the School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Jennifer Wood
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and.
| |
Collapse
|
17
|
Székvölgyi L, Ohta K, Nicolas A. Initiation of meiotic homologous recombination: flexibility, impact of histone modifications, and chromatin remodeling. Cold Spring Harb Perspect Biol 2015; 7:7/5/a016527. [PMID: 25934010 DOI: 10.1101/cshperspect.a016527] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs) catalyzed by the evolutionary conserved Spo11 protein and accessory factors. DSBs are nonrandomly distributed along the chromosomes displaying a significant (~400-fold) variation of frequencies, which ultimately establishes local and long-range "hot" and "cold" domains for recombination initiation. This remarkable patterning is set up within the chromatin context, involving multiple layers of biochemical activity. Predisposed chromatin accessibility, but also a range of transcription factors, chromatin remodelers, and histone modifiers likely promote local recruitment of DSB proteins, as well as mobilization, sliding, and eviction of nucleosomes before and after the occurrence of meiotic DSBs. Here, we assess our understanding of meiotic DSB formation and methods to change its patterning. We also synthesize current heterogeneous knowledge on how histone modifications and chromatin remodeling may impact this decisive step in meiotic recombination.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kunihiro Ohta
- Department of Life Sciences, The University of Tokyo, 113-8654 Tokyo, Japan
| | - Alain Nicolas
- Institut Curie Centre de Recherche, UMR3244 CNRS, Université Pierre et Marie Curie, 75248 Paris CEDEX 05, France
| |
Collapse
|
18
|
Elfving N, Chereji RV, Bharatula V, Björklund S, Morozov AV, Broach JR. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res 2014; 42:5468-82. [PMID: 24598258 PMCID: PMC4027177 DOI: 10.1093/nar/gku176] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor Msn2 mediates a significant proportion of the environmental stress response, in which a common cohort of genes changes expression in a stereotypic fashion upon exposure to any of a wide variety of stresses. We have applied genome-wide chromatin immunoprecipitation and nucleosome profiling to determine where Msn2 binds under stressful conditions and how that binding affects, and is affected by, nucleosome positioning. We concurrently determined the effect of Msn2 activity on gene expression following stress and demonstrated that Msn2 stimulates both activation and repression. We found that some genes responded to both intermittent and continuous Msn2 nuclear occupancy while others responded only to continuous occupancy. Finally, these studies document a dynamic interplay between nucleosomes and Msn2 such that nucleosomes can restrict access of Msn2 to its canonical binding sites while Msn2 can promote reposition, expulsion and recruitment of nucleosomes to alter gene expression. This interplay may allow the cell to discriminate between different types of stress signaling.
Collapse
Affiliation(s)
- Nils Elfving
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Răzvan V Chereji
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Vasudha Bharatula
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Alexandre V Morozov
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
19
|
Krajewski WA. Yeast Isw1a and Isw1b exhibit similar nucleosome mobilization capacities for mononucleosomes, but differently mobilize dinucleosome templates. Arch Biochem Biophys 2014; 546:72-80. [DOI: 10.1016/j.abb.2014.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/27/2022]
|
20
|
Epigenetic regulation of transcription by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1015-25. [DOI: 10.1016/j.bbagrm.2013.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 01/11/2023]
|
21
|
Erkers T, Nava S, Yosef J, Ringdén O, Kaipe H. Decidual Stromal Cells Promote Regulatory T Cells and Suppress Alloreactivity in a Cell Contact-Dependent Manner. Stem Cells Dev 2013; 22:2596-605. [DOI: 10.1089/scd.2013.0079] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tom Erkers
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Center for Allogeneic Stem Cell Transplantation, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Silvia Nava
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Center for Allogeneic Stem Cell Transplantation, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jena Yosef
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Center for Allogeneic Stem Cell Transplantation, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Olle Ringdén
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Center for Allogeneic Stem Cell Transplantation, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Center for Allogeneic Stem Cell Transplantation, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Krajewski WA. Comparison of the Isw1a, Isw1b, and Isw2 Nucleosome Disrupting Activities. Biochemistry 2013; 52:6940-9. [DOI: 10.1021/bi400634r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wladyslaw A. Krajewski
- Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
23
|
Shetty A, Swaminathan A, Lopes JM. Transcription Regulation of a Yeast Gene from a Downstream Location. J Mol Biol 2013; 425:457-65. [DOI: 10.1016/j.jmb.2012.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/26/2012] [Accepted: 11/13/2012] [Indexed: 11/29/2022]
|
24
|
Pascali C, Teichmann M. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 2013; 61:261-287. [PMID: 23150255 DOI: 10.1007/978-94-007-4525-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.
Collapse
Affiliation(s)
- Chiara Pascali
- Institut Européen de Chimie et Biologie (IECB), Université Bordeaux Segalen / INSERM U869, 2, rue Robert Escarpit, 33607, Pessac, France
| | | |
Collapse
|
25
|
Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 2012; 149:1461-73. [PMID: 22726434 DOI: 10.1016/j.cell.2012.04.036] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/30/2012] [Accepted: 04/27/2012] [Indexed: 01/10/2023]
Abstract
How chromatin remodelers cooperate to organize nucleosomes around the start and end of genes is not known. We determined the genome-wide binding of remodeler complexes SWI/SNF, RSC, ISW1a, ISW1b, ISW2, and INO80 to individual nucleosomes in Saccharomyces, and determined their functional contributions to nucleosome positioning through deletion analysis. We applied ultra-high-resolution ChIP-exo mapping to Isw2 to determine its subnucleosomal orientation and organization on a genomic scale. Remodelers interacted with selected nucleosome positions relative to the start and end of genes and produced net directionality in moving nucleosomes either away or toward nucleosome-free regions at the 5' and 3' ends of genes. Isw2 possessed a subnucleosomal organization in accord with biochemical and crystallographic-based models that place its linker binding region within promoters and abutted against Reb1-bound locations. Together, these findings reveal a coordinated position-specific approach taken by remodelers to organize genic nucleosomes into arrays.
Collapse
Affiliation(s)
- Kuangyu Yen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
27
|
Functions of chromatin remodeling factors in heterochromatin formation and maintenance. SCIENCE CHINA-LIFE SCIENCES 2012; 55:89-96. [DOI: 10.1007/s11427-012-4267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
28
|
Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 2011; 472:448-53. [PMID: 21525927 DOI: 10.1038/nature09947] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 02/17/2011] [Indexed: 12/24/2022]
Abstract
Site-specific recognition of DNA in eukaryotic organisms depends on the arrangement of nucleosomes in chromatin. In the yeast Saccharomyces cerevisiae, ISW1a and related chromatin remodelling factors are implicated in establishing the nucleosome repeat during replication and altering nucleosome position to affect gene activity. Here we have solved the crystal structures of S. cerevisiae ISW1a lacking its ATPase domain both alone and with DNA bound at resolutions of 3.25 Å and 3.60 Å, respectively, and we have visualized two different nucleosome-containing remodelling complexes using cryo-electron microscopy. The composite X-ray and electron microscopy structures combined with site-directed photocrosslinking analyses of these complexes suggest that ISW1a uses a dinucleosome substrate for chromatin remodelling. Results from a remodelling assay corroborate the dinucleosome model. We show how a chromatin remodelling factor could set the spacing between two adjacent nucleosomes acting as a 'protein ruler'.
Collapse
|
29
|
TbISWI regulates multiple polymerase I (Pol I)-transcribed loci and is present at Pol II transcription boundaries in Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:964-76. [PMID: 21571922 DOI: 10.1128/ec.05048-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The unicellular eukaryote Trypanosoma brucei is unusual in having very little transcriptional control. The bulk of the T. brucei genome is constitutively transcribed by RNA polymerase II (Pol II) as extensive polycistronic transcription units. Exceptions to this rule include several RNA Pol I transcription units such as the VSG expression sites (ESs), which are mono-allelically expressed. TbISWI, a member of the SWI2/SNF2 related chromatin remodeling ATPases, plays a role in repression of Pol I-transcribed ESs in both bloodstream- and procyclic-form T. brucei. We show that TbISWI binds both active and silent ESs but is depleted from the ES promoters themselves. TbISWI knockdown results in an increase in VSG transcripts from the silent VSG ESs. In addition to its role in the repression of the silent ESs, TbISWI also contributes to the downregulation of the Pol I-transcribed procyclin loci, as well as nontranscribed VSG basic copy arrays and minichromosomes. We also show that TbISWI is enriched at a number of strand switch regions which form the boundaries between Pol II transcription units. These strand switch regions are the presumed sites of Pol II transcription initiation and termination and are enriched in modified histones and histone variants. Our results indicate that TbISWI is a versatile chromatin remodeler that regulates transcription at multiple Pol I loci and is particularly abundant at many Pol II transcription boundaries in T. brucei.
Collapse
|
30
|
Tolkunov D, Zawadzki KA, Singer C, Elfving N, Morozov AV, Broach JR. Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters. Mol Biol Cell 2011; 22:2106-18. [PMID: 21508315 PMCID: PMC3113774 DOI: 10.1091/mbc.e10-10-0826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Most promoters in yeast contain a nucleosome-depleted region (NDR), but the mechanisms by which NDRs are established and maintained in vivo are currently unclear. We have examined how genome-wide nucleosome placement is altered in the absence of two distinct types of nucleosome remodeling activity. In mutants of both SNF2, which encodes the ATPase component of the Swi/Snf remodeling complex, and ASF1, which encodes a histone chaperone, distinct sets of gene promoters carry excess nucleosomes in their NDRs relative to wild-type. In snf2 mutants, excess promoter nucleosomes correlate with reduced gene expression. In both mutants, the excess nucleosomes occupy DNA sequences that are energetically less favorable for nucleosome formation, indicating that intrinsic histone-DNA interactions are not sufficient for nucleosome positioning in vivo, and that Snf2 and Asf1 promote thermodynamic equilibration of nucleosomal arrays. Cells lacking SNF2 or ASF1 still accomplish the changes in promoter nucleosome structure associated with large-scale transcriptional reprogramming. However, chromatin reorganization in the mutants is reduced in extent compared to wild-type cells, even though transcriptional changes proceed normally. In summary, active remodeling is required for distributing nucleosomes to energetically favorable positions in vivo and for reorganizing chromatin in response to changes in transcriptional activity.
Collapse
Affiliation(s)
- Denis Tolkunov
- Department of Physics and Astronomy and BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
31
|
Yu Q, Zhang X, Bi X. Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure. J Biol Chem 2011; 286:14659-69. [PMID: 21388962 DOI: 10.1074/jbc.m110.183269] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterochromatin consists of highly ordered nucleosomes with characteristic histone modifications. There is evidence implicating chromatin remodeling proteins in heterochromatin formation, but their exact roles are not clear. We demonstrate in Saccharomyces cerevisiae that the Fun30p and Isw1p chromatin remodeling factors are similarly required for transcriptional silencing at the HML locus, but they differentially contribute to the structure and stability of HML heterochromatin. In the absence of Fun30p, only a partially silenced structure is established at HML. Such a structure resembles fully silenced heterochromatin in histone modifications but differs markedly from both fully silenced and derepressed chromatin structures regarding nucleosome arrangement. This structure likely represents an intermediate state of heterochromatin that can be converted by Fun30p to the mature state. Moreover, Fun30p removal reduces the rate of de novo establishment of heterochromatin, suggesting that Fun30p assists the silencing machinery in forming heterochromatin. We also find evidence suggesting that Fun30p functions together with, or after, the action of the silencing machinery. On the other hand, Isw1p is dispensable for the formation of heterochromatin structure but is instead critically required for maintaining its stability. Therefore, chromatin remodeling proteins may rearrange nucleosomes during the formation of heterochromatin or serve to stabilize/maintain heterochromatin structure.
Collapse
Affiliation(s)
- Qun Yu
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
32
|
Narayanan MS, Kushwaha M, Ersfeld K, Fullbrook A, Stanne TM, Rudenko G. NLP is a novel transcription regulator involved in VSG expression site control in Trypanosoma brucei. Nucleic Acids Res 2010; 39:2018-31. [PMID: 21076155 PMCID: PMC3064810 DOI: 10.1093/nar/gkq950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma brucei mono-allelically expresses one of approximately 1500 variant surface glycoprotein (VSG) genes while multiplying in the mammalian bloodstream. The active VSG is transcribed by RNA polymerase I in one of approximately 15 telomeric VSG expression sites (ESs). T. brucei is unusual in controlling gene expression predominantly post-transcriptionally, and how ESs are mono-allelically controlled remains a mystery. Here we identify a novel transcription regulator, which resembles a nucleoplasmin-like protein (NLP) with an AT-hook motif. NLP is key for ES control in bloodstream form T. brucei, as NLP knockdown results in 45- to 65-fold derepression of the silent VSG221 ES. NLP is also involved in repression of transcription in the inactive VSG Basic Copy arrays, minichromosomes and procyclin loci. NLP is shown to be enriched on the 177- and 50-bp simple sequence repeats, the non-transcribed regions around rDNA and procyclin, and both active and silent ESs. Blocking NLP synthesis leads to downregulation of the active ES, indicating that NLP plays a role in regulating appropriate levels of transcription of ESs in both their active and silent state. Discovery of the unusual transcription regulator NLP provides new insight into the factors that are critical for ES control.
Collapse
Affiliation(s)
- Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
33
|
Derepression of INO1 transcription requires cooperation between the Ino2p-Ino4p heterodimer and Cbf1p and recruitment of the ISW2 chromatin-remodeling complex. EUKARYOTIC CELL 2010; 9:1845-55. [PMID: 20935143 DOI: 10.1128/ec.00144-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Saccharomyces cerevisiae INO1 gene encodes the structural enzyme inositol-3-phosphate synthase for the synthesis de novo of inositol and inositol-containing phospholipids. The transcription of INO1 is completely derepressed in the absence of inositol and choline (I(-) C(-)). Derepression requires the binding of the Ino2p-Ino4p basic helix-loop-helix (bHLH) heterodimer to the UAS(INO) promoter element. We report here the requirement of a third bHLH protein, centromere-binding factor 1 (Cbf1p), for the complete derepression of INO1 transcription. We found that Cbf1p regulates INO1 transcription by binding to sites distal to the INO1 promoter and encompassing the upstream SNA3 open reading frame (ORF) and promoter. The binding of Cbf1p requires Ino2p-Ino4p binding to the UAS(INO) sites in the INO1 promoter and vice versa, suggesting a cooperative mechanism. Furthermore, Cbf1p binding to the upstream sites was required for the binding of the ISW2 chromatin-remodeling complex to the Ino2p-Ino4p-binding sites on the INO1 promoter. Consistent with this, ISW2 was also required for the complete derepression of INO1 transcription.
Collapse
|
34
|
Tirosh I, Sigal N, Barkai N. Widespread remodeling of mid-coding sequence nucleosomes by Isw1. Genome Biol 2010; 11:R49. [PMID: 20459718 PMCID: PMC2898075 DOI: 10.1186/gb-2010-11-5-r49] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/24/2010] [Accepted: 05/10/2010] [Indexed: 12/02/2022] Open
Abstract
In yeast, the chromatin remodeler Isw1 shifts nucleosomes from mid-coding, to more 5’ regions of genes and may regulate transcriptional elongation. Background The positions of nucleosomes along eukaryotic DNA are defined by the local DNA sequence and are further tuned by the activity of chromatin remodelers. While the genome-wide effect of most remodelers has not been described, recent studies in Saccharomyces cerevisiae have shown that Isw2 prevents ectopic expression of anti-sense and suppressed transcripts at gene ends. Results We examined the genome-wide function of the Isw2 homologue, Isw1, by mapping nucleosome positioning in S. cerevisiae and Saccharomyces paradoxus strains deleted of ISW1. We found that Isw1 functions primarily within coding regions of genes, consistent with its putative role in transcription elongation. Upon deletion of ISW1, mid-coding nucleosomes were shifted upstream (towards the 5' ends) in about half of the genes. Isw1-dependent shifts were correlated with trimethylation of H3K79 and were enriched at genes with internal cryptic initiation sites. Conclusions Our results suggest a division of labor between Isw1 and Isw2, whereby Isw2 maintains repressive chromatin structure at gene ends while Isw1 has a similar function at mid-coding regions. The differential specificity of the two remodelers may be specified through interactions with particular histone marks.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular genetics, Weizmann Institute of Science, Herzl street, Rehovot 76100, Israel.
| | | | | |
Collapse
|
35
|
|
36
|
Abstract
Until recently, it was generally assumed that essentially all regulation of transcription takes place via regions adjacent to the coding region of a gene--namely promoters and enhancers--and that, after recruitment to the promoter, the polymerase simply behaves like a machine, quickly "reading the gene." However, over the past decade a revolution in this thinking has occurred, culminating in the idea that transcript elongation is extremely complex and highly regulated and, moreover, that this process significantly affects both the organization and integrity of the genome. This review addresses basic aspects of transcript elongation by RNA polymerase II (RNAPII) and how it relates to other DNA-related processes.
Collapse
Affiliation(s)
- Luke A Selth
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
37
|
Rasmussen CE, de la Cruz BJ, Ghahramani Z, Wild DL. Modeling and visualizing uncertainty in gene expression clusters using dirichlet process mixtures. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2009; 6:615-628. [PMID: 19875860 DOI: 10.1109/tcbb.2007.70269] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture (DPM) models provide a nonparametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model-based clustering methods have been to short time series data. In this paper, we present a case study of the application of nonparametric Bayesian clustering methods to the clustering of high-dimensional nontime series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a DPM model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data.
Collapse
Affiliation(s)
- Carl Edward Rasmussen
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.
| | | | | | | |
Collapse
|
38
|
SET domains of histone methyltransferases recognize ISWI-remodeled nucleosomal species. Mol Cell Biol 2009; 30:552-64. [PMID: 19752191 DOI: 10.1128/mcb.00775-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The trithorax (trxG) and Polycomb (PcG) group proteins recognize and propagate inheritable patterns of gene expression through a poorly understood epigenetic mechanism. A distinguishing feature of these proteins is the presence of a 130-amino-acid methyltransferase domain (SET), which catalyzes the methylation of histones. It is still not clear how SET proteins distinguish gene expression states, how they are targeted, or what regulates their substrate specificity. Many SET domain-containing proteins show robust activity on core histones but relatively weak activity on intact nucleosomes, their physiological substrate. Here, we examined the binding of two SET domain-containing proteins, ALL1 and SET7, to chromatin substrates. The SET domains from these proteins bind and methylate intact nucleosomes poorly but can recognize disrupted nucleosomal structures associated with transcribed chromatin. Interestingly, the remodeling of dinucleosomes by the ISWI class of ATP-dependent chromatin remodeling enzymes stimulated the binding of SET domains to chromatin and the methylation of H3 within the nucleosome. Unexpectedly, dinucleosomes remodeled by SWI/SNF were poor substrates. Thus, SET domains can distinguish nucleosomes altered by these two classes of remodeling enzymes. Our study reveals novel insights into the mechanism of how SET domains recognize different chromatin states and specify histone methylation at active loci.
Collapse
|
39
|
A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression. Mol Cell Biol 2009; 29:3255-65. [PMID: 19349301 DOI: 10.1128/mcb.01741-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gene expression depends upon the antagonistic actions of chromatin remodeling complexes. While this has been studied extensively for the enzymes that covalently modify the tails of histones, the mechanism of how ATP-dependent remodeling complexes antagonize each other to maintain the proper level of gene activity is not known. The gene encoding a large subunit of ribonucleotide reductase, RNR3, is regulated by ISW2 and SWI/SNF, complexes that repress and activate transcription, respectively. Here, we studied the functional interactions of these two complexes at RNR3. Deletion of ISW2 causes constitutive recruitment of SWI/SNF, and conditional reexpression of ISW2 causes the repositioning of nucleosomes and reduced SWI/SNF occupancy at RNR3. Thus, ISW2 is required for restriction of access of SWI/SNF to the RNR3 promoter under the uninduced condition. Interestingly, the binding of sequence-specific DNA binding factors and the general transcription machinery are unaffected by the status of ISW2, suggesting that disruption of nucleosome positioning does not cause a nonspecific increase in cross-linking of all factors to RNR3. We provide evidence that ISW2 does not act on SWI/SNF directly but excludes its occupancy by positioning nucleosomes over the promoter. Genetic disruption of nucleosome positioning by other means led to a similar phenotype, linking repressed chromatin structure to SWI/SNF exclusion. Thus, incorporation of promoters into a repressive chromatin structure is essential for prevention of the opportunistic actions of nucleosome-disrupting activities in vivo, providing a novel mechanism for maintaining tight control of gene expression.
Collapse
|
40
|
Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae. Mol Cell Biol 2009; 29:2419-30. [PMID: 19273607 DOI: 10.1128/mcb.01050-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SANT domain is a nucleosome recognition module found in transcriptional regulatory proteins, including chromatin-modifying enzymes. It shows high functional degeneracy between species, varying in sequence and copy number. Here, we investigate functions in vivo associated with two SANT motifs, SANT and SLIDE, in the Saccharomyces cerevisiae Isw1 chromatin-remodeling ATPase. We show that differences in the primary structures of the SANT and SLIDE domains in yeast and Drosophila melanogaster reflect their different functions. In yeast, the SLIDE domain is required for histone interactions, while this is a function of the SANT domain in flies. In yeast, both motifs are required for optimal association with chromatin and for formation of the Isw1b complex (Isw1, Ioc2, and Ioc4). Moreover, nucleosome remodeling at the MET16 locus is defective in strains lacking the SANT or SLIDE domain. In contrast, the SANT domain is dispensable for the interaction between Isw1 and Ioc3 in the Isw1a complex. We show that, although defective in nucleosome remodeling, Isw1 lacking the SANT domain is able to repress transcription initiation at the MET16 promoter. Thus, chromatin remodeling and transcriptional repression are distinct activities of Isw1.
Collapse
|
41
|
Role of chromatin states in transcriptional memory. Biochim Biophys Acta Gen Subj 2009; 1790:445-55. [PMID: 19236904 DOI: 10.1016/j.bbagen.2009.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/16/2022]
Abstract
Establishment of cellular memory and its faithful propagation is critical for successful development of multicellular organisms. As pluripotent cells differentiate, choices in cell fate are inherited and maintained by their progeny throughout the lifetime of the organism. A major factor in this process is the epigenetic inheritance of specific transcriptional states or transcriptional memory. In this review, we discuss chromatin transitions and mechanisms by which they are inherited by subsequent generations. We also discuss illuminating cases of cellular memory in budding yeast and evaluate whether transcriptional memory in yeast is nuclear or cytoplasmically inherited.
Collapse
|
42
|
Salminen A, Kaarniranta K. SIRT1 regulates the ribosomal DNA locus: Epigenetic candles twinkle longevity in the Christmas tree. Biochem Biophys Res Commun 2009; 378:6-9. [DOI: 10.1016/j.bbrc.2008.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/06/2008] [Indexed: 12/11/2022]
|
43
|
Lambert JP, Mitchell L, Rudner A, Baetz K, Figeys D. A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics 2008; 8:870-82. [PMID: 19106085 DOI: 10.1074/mcp.m800447-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein-protein interaction mapping has progressed rapidly in recent years, enabling the completion of several high throughput studies. However, knowledge of physical interactions is limited for numerous classes of proteins, such as chromatin-bound proteins, because of their poor solubility when bound to DNA. To address this problem, we have developed a novel method, termed modified chromatin immunopurification (mChIP), that allows for the efficient purification of protein-DNA macromolecules, enabling subsequent protein identification by mass spectrometry. mChIP consists of a single affinity purification step whereby chromatin-bound protein networks are isolated from mildly sonicated and gently clarified cellular extracts using magnetic beads coated with antibodies. We applied the mChIP method in Saccharomyces cerevisiae cells expressing endogenously tandem affinity purification (TAP)-tagged histone H2A or the histone variant Htz1p and successfully co-purified numerous chromatin-bound protein networks as well as DNA. We further challenged the mChIP procedure by purifying three chromatin-bound bait proteins that have proven difficult to purify by traditional methods: Lge1p, Mcm5p, and Yta7p. The protein interaction networks of these three baits dramatically expanded our knowledge of their chromatin environments and illustrate that the innovative mChIP procedure enables an improved characterization of chromatin-associated proteins.
Collapse
Affiliation(s)
- Jean-Philippe Lambert
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
44
|
Magnani L, Lee K, Fodor WL, Machaty Z, Cabot RA. Developmental capacity of porcine nuclear transfer embryos correlate with levels of chromatin-remodeling transcripts in donor cells. Mol Reprod Dev 2008; 75:766-76. [PMID: 18246531 DOI: 10.1002/mrd.20818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Somatic cell nuclear transfer (SCNT) still retains important limitations. Impaired epigenetic reprogramming is considered responsible for altered gene expression and developmental failure in SCNT-derived embryos. After nuclear transfer the donor cell nucleus undergoes extensive changes in gene expression that involve epigenetic modifications and chromatin remodeling. We hypothesized that SNF2-type ATP-dependent chromatin factors contribute to epigenetic reprogramming and the relative amount of these factors in the donor cell affects developmental potential of the reconstructed embryos. In order to test this hypothesis, we assessed the relative amount of SNF2-type ATPases (Brahma, Brg1, SNF2H, SNF2L, CHD3, and CHD5) in three different donor cells as well as in porcine metaphase II oocytes. We performed SCNT with fetal fibroblast cells, olfactory bulb (OB) progenitor cells, and porcine skin originating sphere stem cells (PSOS). We found that OB-NT embryos and PSOS-NT embryos resulted in a higher morulae/blastocysts ratio as compared to fibroblast-NT embryos (23.53%, 16.98%, and 11.63%, respectively; P < 0.05). Fibroblast cells contained a significantly higher amount of SNF2L and CHD3 transcripts while Brg1 and SNF2H were the most expressed transcripts in all the cell lines analyzed. Metaphase II oocyte expression profile appeared to be unique compared to the cell lines analyzed. This work supports our hypothesis that an array of chromatin-remodeling proteins on donor cells may influence the chromatin structure, effect epigenetic reprogramming, and developmental potential.
Collapse
Affiliation(s)
- Luca Magnani
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
45
|
Burgio G, La Rocca G, Sala A, Arancio W, Di Gesù D, Collesano M, Sperling AS, Armstrong JA, van Heeringen SJ, Logie C, Tamkun JW, Corona DFV. Genetic identification of a network of factors that functionally interact with the nucleosome remodeling ATPase ISWI. PLoS Genet 2008; 4:e1000089. [PMID: 18535655 PMCID: PMC2390755 DOI: 10.1371/journal.pgen.1000089] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 05/02/2008] [Indexed: 02/03/2023] Open
Abstract
Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo.
Collapse
Affiliation(s)
- Giosalba Burgio
- Dipartimento di Scienze Biochimiche, Universita' degli Studi di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cairns BR. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 2008; 14:989-96. [PMID: 17984961 DOI: 10.1038/nsmb1333] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin remodelers are ATP-hydrolyzing machines specialized to restructure, mobilize or eject nucleosomes, allowing regulated exposure of DNA in chromatin. Recently, remodelers have been analyzed using single-molecule techniques in real time, revealing them to be complex DNA-pumping machines. The results both support and challenge aspects of current models of remodeling, supporting the idea that the remodeler translocates or pumps DNA loops into and around the nucleosome, while also challenging earlier concepts about loop formation, the character of the loop and how it propagates. Several complex behaviors were observed, such as reverse translocation and long translocation bursts of the remodeler, without appreciable DNA twist. This review presents and discusses revised models for nucleosome sliding and ejection that integrate this new information with the earlier biochemical studies.
Collapse
Affiliation(s)
- Bradley R Cairns
- Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
47
|
Brown E, Malakar S, Krebs JE. How many remodelers does it take to make a brain? Diverse and cooperative roles of ATP-dependent chromatin-remodeling complexes in development. Biochem Cell Biol 2008; 85:444-62. [PMID: 17713580 DOI: 10.1139/o07-059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of a metazoan from a single-celled zygote to a complex multicellular organism requires elaborate and carefully regulated programs of gene expression. However, the tight packaging of genomic DNA into chromatin makes genes inaccessible to the cellular machinery and must be overcome by the processes of chromatin remodeling; in addition, chromatin remodeling can preferentially silence genes when their expression is not required. One class of chromatin remodelers, ATP-dependent chromatin-remodeling enzymes, can slide nucleosomes along the DNA to make specific DNA sequences accessible or inaccessible to regulators at a particular stage of development. While all ATPases in the SWI2/SNF2 superfamily share the fundamental ability to alter DNA accessibility in chromatin, they do not act alone, but rather, are subunits of a large assortment of protein complexes. Recent studies illuminate common themes by which the subunit compositions of chromatin-remodeling complexes specify the developmental roles that chromatin remodelers play in specific tissues and at specific stages of development, in response to specific signaling pathways and transcription factors. In this review, we will discuss the known roles in metazoan development of 3 major subfamilies of chromatin-remodeling complexes: the SNF2, ISWI, and CHD subfamilies.
Collapse
Affiliation(s)
- Elvin Brown
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | | | | |
Collapse
|
48
|
Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol 2008; 28:2221-34. [PMID: 18212068 DOI: 10.1128/mcb.01659-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although chromatin structure is known to affect transcriptional activity, it is not clear how broadly patterns of changes in histone modifications and nucleosome occupancy affect the dynamic regulation of transcription in response to perturbations. The identity and role of chromatin remodelers that mediate some of these changes are also unclear. Here, we performed temporal genome-wide analyses of gene expression, nucleosome occupancy, and histone H4 acetylation during the response of yeast (Saccharomyces cerevisiae) to different stresses and report several findings. First, a large class of predominantly ribosomal protein genes, whose transcription was repressed during both heat shock and stationary phase, showed strikingly contrasting histone acetylation patterns. Second, the SWI/SNF complex was required for normal activation as well as repression of genes during heat shock, and loss of SWI/SNF delayed chromatin remodeling at the promoters of activated genes. Third, Snf2 was recruited to ribosomal protein genes and Hsf1 target genes, and its occupancy of this large set of genes was altered during heat shock. Our results suggest a broad and direct dual role for SWI/SNF in chromatin remodeling, during heat shock activation as well as repression, at promoters and coding regions.
Collapse
|
49
|
Armstrong JA. Negotiating the nucleosome: factors that allow RNA polymerase II to elongate through chromatin. Biochem Cell Biol 2008; 85:426-34. [PMID: 17713578 DOI: 10.1139/o07-054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Initiation by RNA polymerase II (Pol II) involves a host of enzymes, and the process of elongation appears similarly complex. Transcriptional elongation through chromatin requires the coordinated efforts of Pol II and its associated transcription factors: C-terminal domain kinases, elongation complexes, chromatin-modifying enzymes, chromatin remodeling factors, histone chaperones (nucleosome assembly factors), and histone variants. This review examines the following: (i) the consequences of the encounter between elongating Pol II and a nucleosome, and (ii) chromatin remodeling factors and nucleosome assembly factors that have recently been identified as important for the elongation stage of transcription.
Collapse
Affiliation(s)
- Jennifer A Armstrong
- Joint Science Department, The Claremont Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA.
| |
Collapse
|
50
|
Mueller JE, Li C, Bryk M. Isw2 regulates gene silencing at the ribosomal DNA locus in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2007; 361:1017-21. [PMID: 17689493 PMCID: PMC2083704 DOI: 10.1016/j.bbrc.2007.07.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022]
Abstract
Three heterochromatin-like domains have been identified in Saccharomyces cerevisiae that are refractory to transcription by Pol II, the silent mating-type loci, telomeres and the ribosomal DNA. Previous work has shown that chromatin remodelers can regulate silent chromatin. Here, we report the findings of an investigation into the role of ISW2 in transcriptional silencing at the rDNA. We show that the levels of retrotransposition and mRNA from a genetically marked Ty1 element located in the rDNA were increased significantly in isw2Delta cells, while transcript levels from Ty1 elements outside of the rDNA were not increased in cells lacking ISW2. Additionally, we show that Isw2 is not required for silencing at a telomere. Our findings demonstrate that Isw2 is required for transcriptional silencing at the rDNA and emphasize the differences in the regulation of transcriptional silencing at silent loci in S. cerevisiae.
Collapse
Affiliation(s)
- John E Mueller
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|