1
|
Teafatiller T, Heskett CW, Agrawal A, Marchant JS, Baulch JE, Acharya MM, Subramanian VS. Upregulation of Vitamin C Transporter Functional Expression in 5xFAD Mouse Intestine. Nutrients 2021; 13:nu13020617. [PMID: 33672967 PMCID: PMC7918291 DOI: 10.3390/nu13020617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 01/14/2023] Open
Abstract
The process of obtaining ascorbic acid (AA) via intestinal absorption and blood circulation is carrier-mediated utilizing the AA transporters SVCT1 and SVCT2, which are expressed in the intestine and brain (SVCT2 in abundance). AA concentration is decreased in Alzheimer’s disease (AD), but information regarding the status of intestinal AA uptake in the AD is still lacking. We aimed here to understand how AA homeostasis is modulated in a transgenic mouse model (5xFAD) of AD. AA levels in serum from 5xFAD mice were markedly lower than controls. Expression of oxidative stress response genes (glutathione peroxidase 1 (GPX1) and superoxide dismutase 1 (SOD1)) were significantly increased in AD mice jejunum, and this increase was mitigated by AA supplementation. Uptake of AA in the jejunum was upregulated. This increased AA transport was caused by a marked increase in SVCT1 and SVCT2 protein, mRNA, and heterogeneous nuclear RNA (hnRNA) expression. A significant increase in the expression of HNF1α and specific protein 1 (Sp1), which drive SLC23A1 and SLC23A2 promoter activity, respectively, was observed. Expression of hSVCT interacting proteins GRHPR and CLSTN3 were also increased. SVCT2 protein and mRNA expression in the hippocampus of 5xFAD mice was not altered. Together, these investigations reveal adaptive up-regulation of intestinal AA uptake in the 5xFAD mouse model.
Collapse
Affiliation(s)
- Trevor Teafatiller
- Department of Medicine, University of California, Irvine, CA 92697, USA; (T.T.); (C.W.H.); (A.A.)
| | - Christopher W. Heskett
- Department of Medicine, University of California, Irvine, CA 92697, USA; (T.T.); (C.W.H.); (A.A.)
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA 92697, USA; (T.T.); (C.W.H.); (A.A.)
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (J.E.B.); (M.M.A.)
| | - Munjal M. Acharya
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (J.E.B.); (M.M.A.)
| | - Veedamali S. Subramanian
- Department of Medicine, University of California, Irvine, CA 92697, USA; (T.T.); (C.W.H.); (A.A.)
- Correspondence: ; Tel.: +1-949-824-3084
| |
Collapse
|
2
|
Michels AJ, Hagen TM, Frei B. Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu Rev Nutr 2013; 33:45-70. [PMID: 23642198 DOI: 10.1146/annurev-nutr-071812-161246] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
New evidence for the regulation of vitamin C homeostasis has emerged from several studies of human genetic variation. Polymorphisms in the genes encoding sodium-dependent vitamin C transport proteins are strongly associated with plasma ascorbate levels and likely impact tissue cellular vitamin C status. Furthermore, genetic variants of proteins that suppress oxidative stress or detoxify oxidatively damaged biomolecules, i.e., haptoglobin, glutathione-S-transferases, and possibly manganese superoxide dismutase, affect ascorbate levels in the human body. There also is limited evidence for a role of glucose transport proteins. In this review, we examine the extent of the variation in these genes, their impact on vitamin C status, and their potential role in altering chronic disease risk. We conclude that future epidemiological studies should take into account genetic variation in order to successfully determine the role of vitamin C nutriture or supplementation in human vitamin C status and chronic disease risk.
Collapse
|
3
|
Bürzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémençon B, Burrier R, Hediger MA. The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects Med 2013; 34:436-54. [PMID: 23506882 DOI: 10.1016/j.mam.2012.12.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/16/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Marc Bürzle
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Qiao H, May JM. Interaction of the transcription start site core region and transcription factor YY1 determine ascorbate transporter SVCT2 exon 1a promoter activity. PLoS One 2012; 7:e35746. [PMID: 22532872 PMCID: PMC3332055 DOI: 10.1371/journal.pone.0035746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/23/2012] [Indexed: 01/10/2023] Open
Abstract
Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences.
Collapse
Affiliation(s)
- Huan Qiao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
| | | |
Collapse
|
5
|
May JM. The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol 2012; 164:1793-801. [PMID: 21418192 DOI: 10.1111/j.1476-5381.2011.01350.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ascorbate transporters SVCT1 and SVCT2 are crucial for maintaining intracellular ascorbate concentrations in most cell types. Although the two transporter isoforms are highly homologous, they have different physiologic functions. The SVCT1 is located primarily in epithelial cells and has its greatest effect in reabsorbing ascorbate in the renal tubules. The SVCT2 is located in most non-epithelial tissues, with the highest expression in brain and neuroendocrine tissues. These transporters are hydrophobic membrane proteins that have a high affinity and are highly selective for ascorbate. Their ability to concentrate ascorbate inside cells is driven by the sodium gradient across the plasma membrane as generated by Na+/K+ ATPase. They can concentrate ascorbate 20 to 60-fold over plasma ascorbate concentrations. Ascorbate transport on these proteins is regulated at the transcriptional, translational and post-translational levels. Available studies show that transporter function is acutely regulated by protein kinases A and C, whereas transporter expression is increased by low intracellular ascorbate and associated oxidative stress. The knockout of the SVCT2 in mice is lethal on day 1 of life, and almost half of SVCT1 knockout mice do not survive to weaning. These findings confirm the importance both of cellular ascorbate and of the two transport proteins as key to maintaining intracellular ascorbate. LINKED ARTICLES This article is part of a themed section on Transporters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2011.164.issue-7.
Collapse
Affiliation(s)
- James M May
- Departments of Medicine and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA.
| |
Collapse
|
6
|
Bürzle M, Hediger MA. Functional and Physiological Role of Vitamin C Transporters. CO-TRANSPORT SYSTEMS 2012. [DOI: 10.1016/b978-0-12-394316-3.00011-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
CpG methylation at the USF-binding site mediates cell-specific transcription of human ascorbate transporter SVCT2 exon 1a. Biochem J 2011; 440:73-84. [PMID: 21770893 DOI: 10.1042/bj20110392] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SVCT2 (sodium-vitamin C co-transporter 2) is the major transporter mediating vitamin C uptake in most organs. Its expression is driven by two promoters (CpG-poor exon 1a promoter and CpG-rich exon 1b promoter). In the present study, we mapped discrete elements within the proximal CpG-poor promoter responsible for exon 1a transcription. We identified two E boxes for USF (upstream stimulating factor) binding and one Y box for NF-Y (nuclear factor Y) binding. We show further that NF-Y and USF bind to the exon 1a promoter in a co-operative manner, amplifying the binding of each to the promoter, and is absolutely required for the full activity of the exon 1a promoter. The analysis of the CpG site located at the upstream USF-binding site in the promoter showed a strong correlation between expression and demethylation. It was also shown that exon 1a transcription was induced in cell culture treated with the demethylating agent decitabine. The specific methylation of this CpG site impaired both the binding of USF and the formation of the functional NF-Y-USF complex as well as promoter activity, suggesting its importance for cell-specific transcription. Thus CpG methylation at the upstream USF-binding site functions in establishing and maintaining cell-specific transcription from the CpG-poor SVCT2 exon 1a promoter.
Collapse
|
8
|
Qiao H, May JM. Regulation of the human ascorbate transporter SVCT2 exon 1b gene by zinc-finger transcription factors. Free Radic Biol Med 2011; 50:1196-209. [PMID: 21335086 PMCID: PMC3070803 DOI: 10.1016/j.freeradbiomed.2011.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 01/23/2023]
Abstract
The sodium-dependent vitamin C transporter (SVCT) 2 is crucial for ascorbate uptake in metabolically active and specialized tissues. This study focused on the gene regulation of SVCT2 exon 1b, which is ubiquitously expressed in human and mouse tissues. Although the human SVCT2 exon 1b promoter does not contain a classical TATA box, we found that it does contain a functional initiator that binds Yin Yang-1 (YY1) and interacts with upstream Sp1/Sp3 elements in the proximal promoter region. These elements in turn play a critical role in regulating YY1-mediated transcription of exon 1b. Formation of YY1/Sp complexes on the promoter is required for its optional function. YY1 with Sp1 or Sp3 synergistically enhanced exon 1b promoter activity as well as the endogenous SVCT2 protein expression. Further, in addition to Sp1/Sp3, both EGR-1 and EGR-2 were detected in the protein complexes that bound the three GC boxes bearing overlapping binding sites for EGR/WT1 and Sp1/3. The EGR family factors WT1 and MAZ were found to differentially regulate exon 1b promoter activity. These results show that differential occupancy of transcription factors on the GC-rich consensus sequences in the SVCT2 exon 1b promoter contributes to the regulation of cell and tissue expression of SVCT2.
Collapse
Affiliation(s)
- Huan Qiao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232–6303, USA.
| | | |
Collapse
|
9
|
May JM. The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br J Pharmacol 2011. [PMID: 21418192 DOI: 10.1111/bph.2011.164.issue-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The ascorbate transporters SVCT1 and SVCT2 are crucial for maintaining intracellular ascorbate concentrations in most cell types. Although the two transporter isoforms are highly homologous, they have different physiologic functions. The SVCT1 is located primarily in epithelial cells and has its greatest effect in reabsorbing ascorbate in the renal tubules. The SVCT2 is located in most non-epithelial tissues, with the highest expression in brain and neuroendocrine tissues. These transporters are hydrophobic membrane proteins that have a high affinity and are highly selective for ascorbate. Their ability to concentrate ascorbate inside cells is driven by the sodium gradient across the plasma membrane as generated by Na+/K+ ATPase. They can concentrate ascorbate 20 to 60-fold over plasma ascorbate concentrations. Ascorbate transport on these proteins is regulated at the transcriptional, translational and post-translational levels. Available studies show that transporter function is acutely regulated by protein kinases A and C, whereas transporter expression is increased by low intracellular ascorbate and associated oxidative stress. The knockout of the SVCT2 in mice is lethal on day 1 of life, and almost half of SVCT1 knockout mice do not survive to weaning. These findings confirm the importance both of cellular ascorbate and of the two transport proteins as key to maintaining intracellular ascorbate. LINKED ARTICLES This article is part of a themed section on Transporters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2011.164.issue-7.
Collapse
Affiliation(s)
- James M May
- Departments of Medicine and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA.
| |
Collapse
|
10
|
Reidling JC, Rubin SA. Promoter analysis of the human ascorbic acid transporters SVCT1 and 2: mechanisms of adaptive regulation in liver epithelial cells. J Nutr Biochem 2010; 22:344-50. [PMID: 20471816 DOI: 10.1016/j.jnutbio.2010.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/22/2010] [Accepted: 03/02/2010] [Indexed: 11/28/2022]
Abstract
Ascorbic acid, the active form of vitamin C, is a vital antioxidant in the human liver, yet the molecular mechanisms involved in the regulation of ascorbic acid transporters [human sodium-dependent vitamin C transporters (hSVCT) 1 and 2] in liver cells are poorly understood. Therefore, we characterized the minimal promoter regions of hSVCT1 and 2 in cultured human liver epithelial cells (HepG2) and examined the effects of ascorbic acid deprivation and supplementation on activity and regulation of the transport systems. Identified minimal promoters required for basal activity were found to include multiple cis regulatory elements, whereas mutational analysis demonstrated that HNF-1 sites in the hSVCT1 promoter and KLF/Sp1 sites in the hSVCT2 promoter were essential for activities. When cultured in ascorbic acid deficient or supplemented media, HepG2 cells demonstrated significant (P<.01) and specific reciprocal changes in [(14)C]-Ascorbic acid uptake, and in hSVCT1 mRNA and protein levels as well as hSVCT1 promoter activity. However, no significant changes in hSVCT2 expression or promoter activity were observed during ascorbic acid deficient or supplemented conditions. We mapped the ascorbic acid responsive region in the hSVCT1 promoter and determined that HNF-1 sites are important for the adaptive regulation response. The results of these studies further characterize the hSVCT1 and 2 promoters establish that ascorbic acid uptake by human liver epithelial cells is adaptively regulated and show that transcriptional mechanisms via HNF-1 in the hSVCT1 promoter may, in part, be involved in this regulation.
Collapse
|
11
|
Chi X, May JM. Oxidized lipoprotein induces the macrophage ascorbate transporter (SVCT2): protection by intracellular ascorbate against oxidant stress and apoptosis. Arch Biochem Biophys 2009; 485:174-82. [PMID: 19254685 PMCID: PMC3722556 DOI: 10.1016/j.abb.2009.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/13/2009] [Accepted: 02/22/2009] [Indexed: 11/25/2022]
Abstract
To assess whether ascorbic acid decreases the cytotoxicity of oxidized human low density lipoprotein (oxLDL) in cells involved in atherosclerosis, its interaction with oxLDL was studied in murine RAW264.7 macrophages. Macrophages took up ascorbate to millimolar intracellular concentrations and retained it with little loss over 18h in culture. Culture of the macrophages with oxLDL enhanced ascorbate uptake. This was associated with increased expression of the ascorbate transporter (SVCT2), which was prevented by ascorbate and by inhibiting the NF-kappaB pathway. Culture of RAW264.7 macrophages with oxLDL increased intracellular dihydrofluorescein oxidation and lipid peroxidation, both of which were decreased by intracellular ascorbate. Ascorbate also protected the cells against oxLDL-induced cytotoxicity and apoptosis, but it did not affect macrophage accumulation of lipid from oxLDL or oxLDL-induced increases in macrophage cytokine secretion. These results suggest that ascorbate protects macrophages against oxLDL-induced oxidant stress and subsequent apoptotic death without impairing their function.
Collapse
Affiliation(s)
- Xiumei Chi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303
| | - James M. May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303
| |
Collapse
|
12
|
Qiao H, May JM. Macrophage differentiation increases expression of the ascorbate transporter (SVCT2). Free Radic Biol Med 2009; 46:1221-32. [PMID: 19232538 PMCID: PMC3732409 DOI: 10.1016/j.freeradbiomed.2009.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/24/2009] [Accepted: 02/05/2009] [Indexed: 12/11/2022]
Abstract
To determine whether macrophage differentiation involves increased uptake of vitamin C, or ascorbic acid, we assessed the expression and function of its transporter SVCT2 during phorbol ester-induced differentiation of human-derived THP-1 monocytes. Induction of THP-1 monocyte differentiation by phorbol 12-myristate 13-acetate (PMA) markedly increased SVCT2 mRNA, protein, and function. When ascorbate was present during PMA-induced differentiation, the increase in SVCT2 protein expression was inhibited, but differentiation was enhanced. PMA-induced SVCT2 protein expression was blocked by inhibitors of protein kinase C (PKC), with most of the affect due to the PKCbetaI and betaII isoforms. Activation of MEK/ERK was sustained up to 48 h after PMA treatment, and the inhibitors completely blocked PMA-stimulated SVCT2 protein expression, indicating an exclusive role for the classical MAP kinase pathway. However, inhibitors of NF-kappaB activation, NADPH oxidase inhibitors, and several antioxidants also partially prevented SVCT2 induction, suggesting diverse distal routes for control of SVCT2 transcription. Both known promoters for the SVCT2 were involved in these effects. In conclusion, PMA-induced monocyte-macrophage differentiation is enhanced by ascorbate and associated with increased expression and function of the SVCT2 protein through a pathway involving sustained activation of PKCbetaI/II, MAP kinase, NADPH oxidase, and NF-kappaB.
Collapse
Affiliation(s)
- Huan Qiao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| | - James M. May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| |
Collapse
|
13
|
Reidling JC, Subramanian VS, Dahhan T, Sadat M, Said HM. Mechanisms and regulation of vitamin C uptake: studies of the hSVCT systems in human liver epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1217-27. [PMID: 18845575 PMCID: PMC2604802 DOI: 10.1152/ajpgi.90399.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Humans use two sodium-ascorbate cotransporters (hSVCT1 and hSVCT2) for transporting the dietary essential micronutrient ascorbic acid, the reduced and active form of vitamin C. Although the human liver plays a pivotal role in regulating and maintaining vitamin C homeostasis, vitamin C transport physiology and regulation of the hSVCT systems in this organ have not been well defined. Thus, this research used a human hepatic cell line (HepG2), confirming certain results with primary human hepatocytes and determined the initial rate of ascorbic acid uptake to be Na(+) gradient, pH dependent, and saturable as a function of concentration over low and high micromolar ranges. Additionally, hSVCT2 protein and mRNA are expressed at higher levels in HepG2 cells and native human liver, and the cloned hSVCT2 promoter has more activity in HepG2 cells. Results using short interfering RNA suggest that in HepG2 cells, decreasing hSVCT2 message levels reduces the overall ascorbic acid uptake process more than decreasing hSVCT1 message levels. Activation of PKC intracellular regulatory pathways caused a downregulation in ascorbic acid uptake not mediated by a single predicted PKC-specific amino acid phosphorylation site in hSVCT1 or hSVCT2. However, PKC activation causes internalization of hSVCT1 but not hSVCT2. Examination of other intracellular regulatory pathways on ascorbic acid uptake determined that regulation also potentially occurs by PKA, PTK, and Ca(2+)/calmodulin, but not by nitric oxide-dependent pathways. These studies are the first to determine the overall ascorbic acid uptake process and relative expression, regulation, and contribution of the hSVCT systems in human liver epithelial cells.
Collapse
Affiliation(s)
- Jack C. Reidling
- Veterans Affairs Medical Center, Long Beach, California; and University of California College of Medicine, Irvine, California
| | - Veedamali S. Subramanian
- Veterans Affairs Medical Center, Long Beach, California; and University of California College of Medicine, Irvine, California
| | - Tamara Dahhan
- Veterans Affairs Medical Center, Long Beach, California; and University of California College of Medicine, Irvine, California
| | - Mohammed Sadat
- Veterans Affairs Medical Center, Long Beach, California; and University of California College of Medicine, Irvine, California
| | - Hamid M. Said
- Veterans Affairs Medical Center, Long Beach, California; and University of California College of Medicine, Irvine, California
| |
Collapse
|
14
|
Gournas C, Papageorgiou I, Diallinas G. The nucleobase–ascorbate transporter (NAT) family: genomics, evolution, structure–function relationships and physiological role. MOLECULAR BIOSYSTEMS 2008; 4:404-16. [PMID: 18414738 DOI: 10.1039/b719777b] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christos Gournas
- Faculty of Biology, Department of Botany, University of Athens, Panepistimioupolis, Athens, Greece
| | | | | |
Collapse
|
15
|
Savini I, Rossi A, Pierro C, Avigliano L, Catani MV. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 2007; 34:347-55. [PMID: 17541511 DOI: 10.1007/s00726-007-0555-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 04/18/2007] [Indexed: 12/13/2022]
Abstract
Vitamin C is accumulated in mammalian cells by two types of proteins: sodium-ascorbate co-transporters (SVCTs) and hexose transporters (GLUTs); in particular, SVCTs actively import ascorbate, the reduced form of this vitamin. SVCTs are surface glycoproteins encoded by two different genes, very similar in structure. They show distinct tissue distribution and functional characteristics, which indicate different physiological roles. SVCT1 is involved in whole-body homeostasis of vitamin C, while SVCT2 protects metabolically active cells against oxidative stress. Regulation at mRNA or protein level may serve for preferential accumulation of ascorbic acid at sites where it is needed. This review will summarize the present knowledge on structure, function and regulation of the SVCT transporters. Understanding the physiological role of SVCT1 and SVCT2 may lead to develop new therapeutic strategies to control intracellular vitamin C content or to promote tissue-specific delivery of vitamin C-drug conjugates.
Collapse
Affiliation(s)
- I Savini
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | |
Collapse
|