1
|
Liu Y, Han B, Zheng W, Peng P, Yang C, Jiang G, Ma Y, Li J, Ni J, Sun D. Identification of genetic associations and functional SNPs of bovine KLF6 gene on milk production traits in Chinese holstein. BMC Genom Data 2023; 24:72. [PMID: 38017423 PMCID: PMC10685595 DOI: 10.1186/s12863-023-01175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Our previous research identified the Kruppel like factor 6 (KLF6) gene as a prospective candidate for milk production traits in dairy cattle. The expression of KLF6 in the livers of Holstein cows during the peak of lactation was significantly higher than that during the dry and early lactation periods. Notably, it plays an essential role in activating peroxisome proliferator-activated receptor α (PPARα) signaling pathways. The primary aim of this study was to further substantiate whether the KLF6 gene has significant genetic effects on milk traits in dairy cattle. RESULTS Through direct sequencing of PCR products with pooled DNA, we totally identified 12 single nucleotide polymorphisms (SNPs) within the KLF6 gene. The set of SNPs encompasses 7 located in 5' flanking region, 2 located in exon 2 and 3 located in 3' untranslated region (UTR). Of these, the g.44601035G > A is a missense mutation that resulting in the replacement of arginine (CGG) with glutamine (CAG), consequently leading to alterations in the secondary structure of the KLF6 protein, as predicted by SOPMA. The remaining 7 regulatory SNPs significantly impacted the transcriptional activity of KLF6 following mutation (P < 0.005), manifesting as changes in transcription factor binding sites. Additionally, 4 SNPs located in both the UTR and exons were predicted to influence the secondary structure of KLF6 mRNA using the RNAfold web server. Furthermore, we performed the genotype-phenotype association analysis using SAS 9.2 which found all the 12 SNPs were significantly correlated to milk yield, fat yield, fat percentage, protein yield and protein percentage within both the first and second lactations (P < 0.0001 ~ 0.0441). Also, with Haploview 4.2 software, we found the 12 SNPs linked closely and formed a haplotype block, which was strongly associated with five milk traits (P < 0.0001 ~ 0.0203). CONCLUSIONS In summary, our study represented the KLF6 gene has significant impacts on milk yield and composition traits in dairy cattle. Among the identified SNPs, 7 were implicated in modulating milk traits by impacting transcriptional activity, 4 by altering mRNA secondary structure, and 1 by affecting the protein secondary structure of KLF6. These findings provided valuable molecular insights for genomic selection program of dairy cattle.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Bo Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Weijie Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Peng Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chendong Yang
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China
| | - Guie Jiang
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China
| | - Yabin Ma
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China
| | - Jianming Li
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China
| | - Junqing Ni
- Hebei Province Animal Husbandry and Fine Breeds Work Station, No. 7 Xuefu Road, Changan District, Shijiazhuang, 050000, China.
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
2
|
Raza SHA, Pant SD, Wani AK, Mohamed HH, Khalifa NE, Almohaimeed HM, Alshanwani AR, Assiri R, Aggad WS, Noreldin AE, Abdelnour SA, Wang Z, Zan L. Krüppel-like factors family regulation of adipogenic markers genes in bovine cattle adipogenesis. Mol Cell Probes 2022; 65:101850. [PMID: 35988893 DOI: 10.1016/j.mcp.2022.101850] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 02/07/2023]
Abstract
Intramuscular fat (IMF) content is a crucial determinant of meat quality traits in livestock. A network of transcription factors act in concert to regulate adipocyte formation and differentiation, which in turn influences intramuscular fat. Several genes and associated transcription factors have been reported to influence lipogenesis and adipogenesis during fetal and subsequent growth stage. Specifically in cattle, Krüppel-like factors (KLFs), which represents a family of transcription factors, have been reported to be involved in adipogenic differentiation and development. KLFs are a relatively large group of zinc-finger transcription factors that have a variety of functions in addition to adipogenesis. In mammals, the participation of KLFs in cell development and differentiation is well known. Specifically in the context of adipogenesis, KLFs function either as positive (KLF4, KLF5, KLF6, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14 and KLF15) or negative organizers (KLF2, KLF3 and KLF7), by a variety of different mechanisms such as crosstalk with C/EBP and PPARγ. In this review, we aim to summarize the potential functions of KLFs in regulating adipogenesis and associated pathways in cattle. Furthermore, the function of known bovine adipogenic marker genes, and associated transcription factors that regulate the expression of these marker genes is also summarized. Overall, this review will provide an overview of marker genes known to influence bovine adipogenesis and regulation of expression of these genes, to provide insights into leveraging these genes and transcription factors to enhance breeding programs, especially in the context of IMF deposition and meat quality.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Sameer D Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, (144411), India
| | - Hadeer H Mohamed
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Fuka, Matrouh University, Matrouh, 51744, Egypt
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Aliah R Alshanwani
- Physiology Department, College of Medicine, King Saud University, Saudi Arabia
| | - Rasha Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah, 23234, Saudi Arabia
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Hu K, Zheng QK, Ma RJ, Ma C, Sun ZG, Zhang N. Krüppel-Like Factor 6 Splice Variant 1: An Oncogenic Transcription Factor Involved in the Progression of Multiple Malignant Tumors. Front Cell Dev Biol 2021; 9:661731. [PMID: 33816511 PMCID: PMC8017371 DOI: 10.3389/fcell.2021.661731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023] Open
Abstract
Krüppel-like factor 6 (KLF6) is one of the most studied members of the specificity protein/Krüppel-like factor (SP/KLF) transcription factor family. It has a typical zinc finger structure and plays a pivotal role in regulating the biological processes of cells. Recently, it has been considered to play a role in combatting cancer. Krüppel-like factor 6 splice variant 1 (KLF6-SV1), being one of the alternative KLF6 splicing isoforms, participates in tumor occurrence and development and has the potential to become a new target for molecular targeted therapy, although its action mechanism remains to be determined. The purpose of this article is to provide a comprehensive and systematic review of the important role of KLF6-SV1 in human malignant tumors to provide novel insights for oncotherapy.
Collapse
Affiliation(s)
- Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Rui-Jie Ma
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Schmidtke C, Tiede S, Thelen M, Käkelä R, Jabs S, Makrypidi G, Sylvester M, Schweizer M, Braren I, Brocke-Ahmadinejad N, Cotman SL, Schulz A, Gieselmann V, Braulke T. Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J Biol Chem 2019; 294:9592-9604. [PMID: 31040178 DOI: 10.1074/jbc.ra119.008852] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The CLN3 gene encodes a lysosomal membrane protein of unknown function, and CLN3 mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells. We purified lysosomes from SILAC-labeled, and magnetite-loaded cerebellar cells by magnetic separation and analyzed them by MS. This analysis identified 70 proteins assigned to the lysosomal compartment and 3 lysosomal cargo receptors, of which most exhibited a significant differential abundance between control and CLN3-defective cells. Among these, 28 soluble lysosomal proteins catalyzing the degradation of various macromolecules had reduced levels in CLN3-defective cells. We confirmed these results by immunoblotting and selected protease and glycosidase activities. The reduction of 11 lipid-degrading lysosomal enzymes correlated with reduced capacity for lipid droplet degradation and several alterations in the distribution and composition of membrane lipids. In particular, levels of lactosylceramides and glycosphingolipids were decreased in CLN3-defective cells, which were also impaired in the recycling pathway of the exocytic transferrin receptor. Our findings suggest that CLN3 has a crucial role in regulating lysosome composition and their function, particularly in degrading of sphingolipids, and, as a consequence, in membrane transport along the recycling endosome pathway.
Collapse
Affiliation(s)
- Carolin Schmidtke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Stephan Tiede
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland 00014
| | - Sabrina Jabs
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany 13125
| | - Georgia Makrypidi
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Michaela Schweizer
- the Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | - Ingke Braren
- Vector Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | | | - Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Angela Schulz
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Thomas Braulke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246,
| |
Collapse
|
5
|
Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis. Arch Pharm Res 2019; 42:232-243. [DOI: 10.1007/s12272-019-01114-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
|
6
|
Abstract
Supplemental Digital Content is available in the text. Kruppel like factor 6 (KLF6), a member of KLF family, which has classic zinc finger structure, is broadly considered to have anticancer activity. The role of SV2 variant, one of KLF6 alternative splicing isoforms has not yet been definite in the colorectal cancer. This study aimed to detect the expression of the KLF6-SV2 in colorectal cancer and investigate its impact on cell proliferation and apoptosis. qRT-PCR was used to quantitatively determine KLF6-SV2 mRNA expression in colorectal cancer samples, corresponding normal tissue, normal colonic mucosal cell line FHC and seven colorectal cancer cell lines. SW480 and SW620 cell models with over-expressing KLF6-SV2 were constructed. Cell proliferation, cell cycle and apoptosis were measured respectively using MTT assay, DNA ploidy detection and Annexin V flow cytometry. Meanwhile, expression of p53, p21 and Bax were detected by qRT-PCR and western blot. The mRNA expression level of KLF6-SV2 in colorectal cancer tissues (0.783±0.409) was decreased than in corresponding normal tissues (1.086±0.449) (P<0.01), and expression in SW480 and SW620 were lower than in FHC, HCT116, LoVo, HT29, Caco-2 and RKO. In cell lines over-expressing KLF6-SV2, cell proliferation was markedly suppressed, cell cycle was blocked and cell apoptosis was significantly induced. Simultaneously, expression of p21 and Bax were remarkably up-regulated, while p53 remained unchanged. Decreased expression of KLF6-SV2 may be associated with the occurrence and development of colorectal cancer. KLF6-SV2 plays a role as tumor suppressor by efficiently blocking cell proliferation, arresting cell cycle and inducing apoptosis in colorectal cancer, which may be related to increased expression of p21 and Bax.
Collapse
|
7
|
The impact of simvastatin on pulmonary effectors of Pseudomonas aeruginosa infection. PLoS One 2014; 9:e102200. [PMID: 25010049 PMCID: PMC4092124 DOI: 10.1371/journal.pone.0102200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
The statin family of cholesterol-lowering drugs is known to have pleiotropic properties which include anti-inflammatory and immunomodulatory effects. Statins exert their pleiotropic effects by altering expression of human immune regulators including pro-inflammatory cytokines. Previously we found that statins modulate virulence phenotypes of the human pathogen Pseudomonas aeruginosa, and sought to investigate if simvastatin could alter the host response to this organism in lung epithelial cells. Simvastatin increased the expression of the P. aeruginosa target genes KLF2, KLF6, IL-8 and CCL20. Furthermore, both simvastatin and P. aeruginosa induced alternative splicing of KLF6. The novel effect of simvastatin on wtKLF6 expression was found to be responsible for induction of the KLF6 regulated genes CCL20 and iNOS. Simvastatin also increased the adhesion of P. aeruginosa to host cells, without altering invasion or cytotoxicity. This study demonstrated that simvastatin had several novel effects on the pulmonary cellular immune response.
Collapse
|
8
|
Cheng JC, Bai A, Beckham TH, Marrison ST, Yount CL, Young K, Lu P, Bartlett AM, Wu BX, Keane BJ, Armeson KE, Marshall DT, Keane TE, Smith MT, Jones EE, Drake RR, Bielawska A, Norris JS, Liu X. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest 2013; 123:4344-58. [PMID: 24091326 DOI: 10.1172/jci64791] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2013] [Indexed: 01/06/2023] Open
Abstract
Escape of prostate cancer (PCa) cells from ionizing radiation-induced (IR-induced) killing leads to disease progression and cancer relapse. The influence of sphingolipids, such as ceramide and its metabolite sphingosine 1-phosphate, on signal transduction pathways under cell stress is important to survival adaptation responses. In this study, we demonstrate that ceramide-deacylating enzyme acid ceramidase (AC) was preferentially upregulated in irradiated PCa cells. Radiation-induced AC gene transactivation by activator protein 1 (AP-1) binding on the proximal promoter was sensitive to inhibition of de novo ceramide biosynthesis, as demonstrated by promoter reporter and ChIP-qPCR analyses. Our data indicate that a protective feedback mechanism mitigates the apoptotic effect of IR-induced ceramide generation. We found that deregulation of c-Jun induced marked radiosensitization in vivo and in vitro, which was rescued by ectopic AC overexpression. AC overexpression in PCa clonogens that survived a fractionated 80-Gy IR course was associated with increased radioresistance and proliferation, suggesting a role for AC in radiotherapy failure and relapse. Immunohistochemical analysis of human PCa tissues revealed higher levels of AC after radiotherapy failure than those in therapy-naive PCa, prostatic intraepithelial neoplasia, or benign tissues. Addition of an AC inhibitor to an animal model of xenograft irradiation produced radiosensitization and prevention of relapse. These data indicate that AC is a potentially tractable target for adjuvant radiotherapy.
Collapse
|
9
|
Schuchman EH, Simonaro CM. The genetics of sphingolipid hydrolases and sphingolipid storage diseases. Handb Exp Pharmacol 2013:3-32. [PMID: 23579447 DOI: 10.1007/978-3-7091-1368-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The relationship of sphingolipids with human disease first arose from the study of sphingolipid storage diseases over 50 years ago. Most of these disorders are due to inherited deficiencies of specific sphingolipid hydrolases, although a small number also result from defects in sphingolipid transport or activator proteins. Due to the primary protein deficiencies sphingolipids and other macromolecules accumulate in cells and tissues of affected patients, leading to a diverse presentation of clinical abnormalities. Over 25 sphingolipid storage diseases have been described to date. Most of the genes have been isolated, disease-causing mutations have been identified, the recombinant proteins have been produced and characterized, and animal models exist for most of the human diseases. Since most sphingolipid hydrolases are enriched within the endosomal/lysosomal system, macromolecules first accumulate within these compartments. However, these abnormalities rapidly spread to other compartments and cause a wide range of cellular dysfunction. This review focuses on the genetics of sphingolipid storage diseases and related hydrolytic enzymes with an emphasis on the relationship between genetic mutations and human disease.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
10
|
Lucki NC, Sewer MB. Genistein stimulates MCF-7 breast cancer cell growth by inducing acid ceramidase (ASAH1) gene expression. J Biol Chem 2011; 286:19399-409. [PMID: 21493710 PMCID: PMC3103318 DOI: 10.1074/jbc.m110.195826] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 04/02/2011] [Indexed: 12/27/2022] Open
Abstract
Sphingolipid metabolites, such as ceramide (Cer), sphingosine (SPH), and sphingosine 1-phosphate (S1P), contribute to multiple aspects of carcinogenesis including cell proliferation, migration, angiogenesis, and tumor resistance. The cellular balance between Cer and S1P levels, for example, is an important determinant of cell fate, with the former inducing apoptosis and the later mitogenesis. Acid ceramidase (ASAH1) plays a pivotal role in regulating the intracellular concentration of these two metabolites by hydrolyzing Cer into SPH, which is rapidly phosphorylated to form S1P. Genistein is a phytoestrogen isoflavone that exerts agonist and antagonist effects on the proliferation of estrogen-dependent MCF-7 cells in a dose-dependent manner, primarily as a ligand for estrogen receptors. Genistein can also activate signaling through GPR30, a G-protein-coupled cell surface receptor. Based on the relationship between bioactive sphingolipids and tumorigenesis, we sought to determine the effect of genistein on ASAH1 transcription in MCF-7 breast cancer cells. We show herein that nanomolar concentrations of genistein induce ASAH1 transcription through a GPR30-dependent, pertussis toxin-sensitive pathway that requires the activation of c-Src and extracellular signal regulated kinase 1/2 (ERK1/2). Activation of this pathway promotes histone acetylation and recruitment of phospho-estrogen receptor α and specificity protein-1 to the ASAH1 promoter, ultimately culminating in increased ceramidase activity. Finally, we show that genistein stimulates cyclin B2 expression and cell proliferation in an ASAH1-dependent manner. Collectively, these data identify a mechanism through which genistein promotes sphingolipid metabolism and support a role for ASAH1 in breast cancer cell growth.
Collapse
MESH Headings
- Acetylation/drug effects
- Acid Ceramidase/biosynthesis
- Acid Ceramidase/genetics
- Anticarcinogenic Agents/pharmacology
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- CSK Tyrosine-Protein Kinase
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Genistein/pharmacology
- Histones/genetics
- Histones/metabolism
- Humans
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Estrogen
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Sphingolipids/genetics
- Sphingolipids/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- src-Family Kinases
Collapse
Affiliation(s)
- Natasha C. Lucki
- From the School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332 and
| | - Marion B. Sewer
- the Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
11
|
Liu X, Cheng JC, Turner LS, Elojeimy S, Beckham TH, Bielawska A, Keane TE, Hannun YA, Norris JS. Acid ceramidase upregulation in prostate cancer: role in tumor development and implications for therapy. Expert Opin Ther Targets 2009; 13:1449-58. [PMID: 19874262 PMCID: PMC2796572 DOI: 10.1517/14728220903357512] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bioactive sphingolipids, such as ceramide, sphingosine and sphingosine-1-phosphate are known bio-effector molecules which play important roles in various aspects of cancer biology including cell proliferation, growth arrest, apoptosis, metastasis, senescence and inflammation. Therefore, enzymes involved in ceramide metabolism are gaining recognition as being critical regulators of cancer cell growth and/or survival. We previously observed that the ceramide metabolizing enzyme, acid ceramidase (AC) is upregulated in tumor tissues. Studies have now concluded that this creates a dysfunctional ceramide pathway, which is responsible for tumor progression and resistance to chemotherapy and radiation. This suggests that development of small-molecule drugs that inhibit AC enzyme activity is a promising approach for improving standard cancer therapy and patient's clinical outcomes.
Collapse
Affiliation(s)
- Xiang Liu
- Assistant Professor, Division of Basic Sciences, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.7412
| | - Joseph C. Cheng
- MD/PhD Student, Division of Basic Sciences, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.8499
| | - Lorianne S. Turner
- Postdoctoral Fellow, Division of Basic Sciences, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.8499
| | - Saeed Elojeimy
- Division of Basic Sciences, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.814.7010
| | - Thomas H. Beckham
- MD/PhD Student, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.8499
| | - Alicja Bielawska
- Professor, Departments of: Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.1627, Phone: 843.792.0273
| | - Thomas E. Keane
- Professor and Chair, Department of Urology, MUSC, 96 Jonathan Lucas Street, Room 644, Clinical Science Building, Phone: 843.792.1666
| | - Yusuf A. Hannun
- Senior Associate Dean for Basic Sciences, Director, Division of Basic Sciences, Distinguished University Professor, Chair, Department of Biochemistry & Molecular Biology, Cell and Molecular Pharmacology & Experimental Therapeutics, Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 509, Charleston, South Carolina 29425-5090, FAX: 843.792.4322, Phone: 843.792.9318
| | - James S. Norris
- Professor and Chair, Department of Microbiology & Immunology, MUSC, 173 Ashley Avenue, MSC 504, Charleston, South Carolina 29425-5040, FAX: 843.792.4882, Phone: 843.792.7915
| |
Collapse
|
12
|
Lucki N, Sewer MB. The cAMP-responsive element binding protein (CREB) regulates the expression of acid ceramidase (ASAH1) in H295R human adrenocortical cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:706-13. [PMID: 19298866 DOI: 10.1016/j.bbalip.2009.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/19/2009] [Accepted: 03/06/2009] [Indexed: 01/09/2023]
Abstract
Acid ceramidase (encoded by ASAH1) is a lipid hydrolase that catalyzes the conversion of ceramide (cer) into sphingosine (SPH) and a free fatty acid. Adrenocortical steroidogenesis is regulated by the trophic peptide hormone adrenocorticotropin (ACTH), which induces the expression of steroidogenic genes in the human adrenal cortex primarily via a cAMP/protein kinase A (PKA)-dependent pathway. ACTH also stimulates sphingolipid metabolism in H295R adrenocortical cells leading to changes in steroidogenic gene expression. Based on our previous data identifying SPH as an antagonist for the nuclear receptor steroidogenic factor 1 (SF-1) and the role of ACTH-stimulated changes in sphingolipid metabolism on steroidogenic gene transcription, the aim of the current study was to determine the role of ACTH signaling in regulating the expression of the ASAH1 gene in H295R cells. We show that activation of the ACTH signaling pathway induces ASAH1 gene expression by stimulating the binding of the cAMP-responsive element binding protein (CREB) to multiple regions of the ASAH1 promoter. CREB binding promotes the recruitment of the coactivators CREB binding protein (CBP) and p300 to the CREB-responsive regions of the promoter. Consistent with transcriptional activation, we show that cAMP signaling increases the trimethylation of Lys 4 on histone H3 (H3K4) along the ASAH1 promoter. Finally, RNA interference (RNAi) experiments demonstrate that CREB is indispensable for cAMP-induced ASAH1 transcription. These data identify the ACTH/cAMP signaling pathway and CREB as transcriptional regulators of the ASAH1 gene in the human adrenal cortex.
Collapse
Affiliation(s)
- Natasha Lucki
- Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA 30332-0230, USA
| | | |
Collapse
|
13
|
Zeidan YH, Jenkins RW, Korman JB, Liu X, Obeid LM, Norris JS, Hannun YA. Molecular targeting of acid ceramidase: implications to cancer therapy. Curr Drug Targets 2008; 9:653-61. [PMID: 18691012 DOI: 10.2174/138945008785132358] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increasingly recognized as bioactive molecules, sphingolipids have been studied in a variety of disease models. The impact of sphingolipids on cancer research facilitated the entry of sphingolipid analogues and enzyme modulators into clinical trials. Owing to its ability to regulate two bioactive sphingolipids, ceramide and sphingosine-1-phosphate, acid ceramidase (AC) emerges as an attractive target for drug development within the sphingolipid metabolic pathway. Indeed, there is extensive evidence supporting a pivotal role for AC in lipid metabolism and cancer biology. In this article, we review the current knowledge of the biochemical properties of AC, its relevance to tumor promotion, and its molecular targeting approaches.
Collapse
Affiliation(s)
- Youssef H Zeidan
- Department of Biochemistry and Molecular Biology Medical University of South Carolina .175 Ashley Avenue, P.O. Box 250509. Charleston, South Carolina, 29425, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Sirach E, Bureau C, Péron JM, Pradayrol L, Vinel JP, Buscail L, Cordelier P. KLF6 transcription factor protects hepatocellular carcinoma-derived cells from apoptosis. Cell Death Differ 2007; 14:1202-10. [PMID: 17347668 DOI: 10.1038/sj.cdd.4402114] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern because of the absence of early diagnosis and effective treatments. Efficient diagnosis modalities and therapies to treat HCC are needed. Kruppel-like factor (KLF) family members, such as KLF6, are involved in cell proliferation and differentiation. KLF6 is inactivated in solid tumors, which may contribute to pathogenesis. However, KLF6 status in HCC is controversial. Thus, we undertook the characterization of KLF6 expression and function in HCC and HCC-derived cell lines. We found that HCC, HepG2 and HuH7 cells expressed KLF6 messenger ribonucleic acid and protein. Next, using RNA interference, we demonstrated that inhibiting KLF6 expression in vitro strongly impaired cell proliferation-induced G1-phase arrest, inhibited cyclin-dependent kinase 4 and cyclin D1 expression, and subsequent retinoblastoma phosphorylation. Finally, KLF6 silencing caused p53 upregulation and inhibited Bcl-xL expression, to induce cell death by apoptosis. Taken together, these data demonstrated that KLF6 is essential for HCC-derived cells to evade apoptosis.
Collapse
Affiliation(s)
- E Sirach
- INSERM U858, I2MR, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|