1
|
Meurer SK, Bronneberg G, Penners C, Kauffmann M, Braunschweig T, Liedtke C, Huber M, Weiskirchen R. TGF-β1 Induces Mucosal Mast Cell Genes and is Negatively Regulated by the IL-3/ERK1/2 Axis. Cell Commun Signal 2025; 23:76. [PMID: 39934802 DOI: 10.1186/s12964-025-02048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Mast cells develop from the myeloid lineage and are released from the bone marrow as immature cells, which then differentiate at the destination tissue based on cues from the local environment. In the liver, mast cells are recruited in diseased states to fibrogenic surroundings rich in TGF-β1. The aim of this study was to investigate TGF-β1 signaling in primary and permanent mast cells to identify common and unique mechanisms. The TGF-β receptor repertoire is similar among mast cells, with high expression of type I and type II receptors and very low expression of type III receptors (Betaglycan and Endoglin). Downstream, TGF-β1 activates the SMAD2/3 signaling axis and also SMAD1/5 with target genes Smad6 and Id1 in a transient manner. Initially, TGF-β1 upregulates the transcription of mucosal mast cell effectors Mcpt1 and Mcpt2 in all analyzed mast cells. This upregulation is reduced in the presence of IL-3, which promotes proliferation. Inhibition of ERK1/2 activation reduces proliferation and mitigates the negative effect of IL-3 on Mcpt1 mRNA and protein expression in the immortalized mast cell line PMC-306 but not in bone marrow-derived mast cells. Therefore, extracellular signal-regulated kinases ERK1/2 are identified as a mutual switch between IL-3-driven proliferation and TGF-β1-promoted mucosal mast cell differentiation in PMC-306. In conclusion, TGF-β1 promotes a mucosal gene signature and inhibits proliferation in mast cells, with these effects being counter-regulated by IL-3/ERK1/2.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| | - Gina Bronneberg
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Penners
- Department of Internal Medicine III, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Liedtke
- Department of Internal Medicine III, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
3
|
Regulatory expression of bone morphogenetic protein 6 by 2,2'-dipyridyl. Biochim Biophys Acta Gen Subj 2020; 1864:129610. [PMID: 32251709 DOI: 10.1016/j.bbagen.2020.129610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Expression of hepcidin, a hormone produced by hepatocytes which negatively regulates the circulating iron levels, is known to be positively regulated by BMP6, a member of transforming growth factor (TGF)-β family. Previous studies have shown that iron status is sensed by sinusoidal endothelial cells of hepatic lamina, leading to the modulation of BMP6 expression. METHODS ISOS-1, HUVEC, F-2, and SK-HEP1 endothelial cells were treated with either iron or 2,2'-dipyridyl (2DP), a cell-permeable iron-chelator, and expression level of Bmp6 was examined. To identify factors affecting Bmp6 transcription, stimulus screening for regulator of transcription (SSRT) was developed. RESULTS Treatment with iron slightly increased the expression levels of Bmp6, while 2DP unexpectedly increased Bmp6 expression in a dose-dependent manner. 2DP-induced Bmp6 expression was resistant to co-treatment with iron. 2DP-induced Bmp6 expression was also detected in HUVEC, F-2 cells, and SK-HEP1 cells. Luciferase-based reporter assays indicated that forced expression of JunB increased the transcription of Bmp6. 2DP induced phosphorylation of JunB; co-treatment with SP600125 blocked the 2DP-induced Bmp6 expression partially. JunB-induced Bmp6 transcription was not affected by mutations of putative JunB-responsive elements. Some endoplasmic reticulum stress inducers increased the expression of Bmp6. SSRT revealed pathways regulating Bmp6 transcription positively and negatively. Hepa1-6 liver cells and C2C12 myogenic cells were prone to 2DP induced Bmp6 expression. CONCLUSIONS The present study reveals non‑iron-regulated Bmp6 expression in endothelial cells. GENERAL SIGNIFICANCE Regulatory expression of Bmp6 may be important as a key step for fine tuning of BMP activity.
Collapse
|
4
|
Ávila-Rodríguez D, Segura-Villalobos DL, Ibarra-Sánchez A, González-Espinosa C, Macías-Silva M. TGF-β y células cebadas: reguladores del desarrollo del tumor. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
El Factor de crecimiento transformante β (TGF-β) es una citocina pleiotrópica implicada en distintas condiciones patológicas, como desórdenes autoinmunes, alergias y en los últimos años, en el cáncer. Esta citocina ejerce efectos supresores de tumores que las células cancerosas deben evadir para lograr la progresión del tumor. Sin embargo, paradójicamente, el TGF-β también modula procesos inflamatorios que favorecen la progresión del tumor, como el reclutamiento de células del sistema inmune al sitio del mismo; entre estas células se encuentran las células cebadas (CCs), las cuales, a su vez también participan en la regulación del tumor, a través de la secreción de distintos mediadores proinflamatorios, proangiogénicos y factores de crecimiento. En esta revisión se describen algunos avances en la comprensión del papel del TGF-β en la regulación de las CCs y la contribución de éstas en el desarrollo y la metástasis de tumores sólidos. El entendimiento de la función del TGF-β y de las células cebadas durante el desarrollo del cáncer es fundamental para el diseño de nuevas terapias que inhiban la progresión del tumor.
Collapse
|
5
|
Kasakura K, Nagata K, Miura R, Iida M, Nakaya H, Okada H, Arai T, Arai T, Kawakami Y, Kawakami T, Yashiro T, Nishiyama C. Cooperative Regulation of the Mucosal Mast Cell-Specific Protease Genes Mcpt1 and Mcpt2 by GATA and Smad Transcription Factors. THE JOURNAL OF IMMUNOLOGY 2020; 204:1641-1649. [PMID: 32005755 DOI: 10.4049/jimmunol.1900094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Mouse mast cell proteases (mMCP)-1 and -2 are specifically expressed in mucosal mast cells (MCs). However, the transcriptional regulation mechanism of the Mcpt1 and Mcpt2 genes induced in mucosal MCs is largely unknown. In the current study, we found that TGF-β stimulation drastically induced upregulation of Mcpt1 and Mcpt2 mRNA in mouse bone marrow-derived MCs (BMMCs). TGF-β-induced expression of Mcpt1 and Mcpt2 was markedly suppressed by transfection with small interfering RNA targeting Smad2 or Smad4 and moderately reduced by Smad3 small interfering RNA. We next examined the roles of the hematopoietic cell-specific transcription factors GATA1 and GATA2 in the expression of Mcpt1 and Mcpt2 and demonstrated that knockdown of GATA1 and GATA2 reduced the mRNA levels of Mcpt1 and Mcpt2 in BMMCs. The recruitment of GATA2 and acetylation of histone H4 of the highly conserved GATA-Smad motifs, which were localized in the distal regions of the Mcpt1 and Mcpt2 genes, were markedly increased by TGF-β stimulation, whereas the level of GATA2 binding to the proximal GATA motif was not affected by TGF-β. A reporter assay showed that TGF-β stimulation upregulated GATA2-mediated transactivation activity in a GATA-Smad motif-dependent manner. We also observed that GATA2 and Smad4 interacted in TGF-β-stimulated BMMCs via immunoprecipitation and Western blotting analysis. Taken together, these results demonstrate that TGF-β induced mMCP-1 and -2 expression by accelerating the recruitment of GATA2 to the proximal regions of the Mcpt1 and Mcpt2 genes in mucosal MCs.
Collapse
Affiliation(s)
- Kazumi Kasakura
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and.,Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Kazuki Nagata
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Ryosuke Miura
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Mayu Iida
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Hikaru Nakaya
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Hikaru Okada
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Takahiro Arai
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Takahiro Arai
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Takuya Yashiro
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Chiharu Nishiyama
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| |
Collapse
|
6
|
Feng XX, Luo J, Liu M, Yan W, Zhou ZZ, Xia YJ, Tu W, Li PY, Feng ZH, Tian DA. Sirtuin 6 promotes transforming growth factor-β1/H2O2/HOCl-mediated enhancement of hepatocellular carcinoma cell tumorigenicity by suppressing cellular senescence. Cancer Sci 2015; 106:559-66. [PMID: 25683165 PMCID: PMC4452156 DOI: 10.1111/cas.12632] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 02/04/2015] [Indexed: 01/14/2023] Open
Abstract
Sirtuin 6 (SIRT6) can function as a tumor suppressor by suppressing aerobic glycolysis and apoptosis resistance. However, the negative effect of SIRT6 on cellular senescence implies that it may also have the potential to promote tumor development. Here we report that the upregulation of SIRT6 expression was required for transforming growth factor (TGF)-β1 and H2O2/HOCl reactive oxygen species (ROS) to promote the tumorigenicity of hepatocellular carcinoma (HCC) cells. Transforming growth factor-β1/H2O2/HOCl could upregulate SIRT6 expression in HCC cells by inducing the sustained activation of ERK and Smad pathways. Sirtuin 6 in turn abrogated the inducing effect of TGF-β1/H2O2/HOCl on cellular senescence of HCC cells, and was required for the ERK pathway to efficiently suppress the expression of p16 and p21. Sirtuin 6 altered the effect of Smad and p38 MAPK pathways on cellular senescence, and contributed to the inhibitory effect of the ERK pathway on cellular senescence. However, SIRT6 was inefficient in antagonizing the promoting effect of TGF-β1/H2O2/HOCl on aerobic glycolysis and anoikis resistance. Intriguingly, if SIRT6 expression was inhibited, the promoting effect of TGF-β1/H2O2/HOCl on aerobic glycolysis and anoikis resistance was not sufficient to enhance the tumorigenicity of HCC cells. Suppressing the upregulation of SIRT6 enabled TGF-β1/H2O2/HOCl to induce cellular senescence, thereby abrogating the enhancement of HCC cell tumorigenicity by TGF-β1/H2O2/HOCl. These results suggest that SIRT6 is required for TGF-β1/H2O2/HOCl to enhance the tumorigenicity of HCC cells, and that targeting the ERK pathway to suppress the upregulation of SIRT6 might be a potential approach in comprehensive strategies for the therapy of HCC.
Collapse
Affiliation(s)
- Xin-Xia Feng
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Zhen-Zhen Zhou
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Yu-Jia Xia
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Wei Tu
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Pei-Yuan Li
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-An Tian
- Department of Gastroenterology, Tongji Hospital, Wuhan, China
| |
Collapse
|
7
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
8
|
Kanamori Y, Murakami M, Matsui T, Funaba M. The regulation of hepcidin expression by serum treatment: requirements of the BMP response element and STAT- and AP-1-binding sites. Gene 2014; 551:119-26. [PMID: 25151311 DOI: 10.1016/j.gene.2014.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/26/2014] [Accepted: 08/20/2014] [Indexed: 12/26/2022]
Abstract
Expression of hepcidin, a central regulator of systemic iron metabolism, is transcriptionally regulated by the bone morphogenetic protein (BMP) pathway. However, the factors other than the BMP pathway also participate in the regulation of hepcidin expression. In the present study, we show that serum treatment increased hepcidin expression and transcription without inducing the phosphorylation of Smad1/5/8 in primary hepatocytes, HepG2 cells or Hepa1-6 cells. Co-treatment with LDN-193189, an inhibitor of the BMP type I receptor, abrogated this hepcidin induction. Reporter assays using mutated reporters revealed the involvement of the BMP response element-1 (BMP-RE1) and signal transducers and activator of transcription (STAT)- and activator protein (AP)-1-binding sites in serum-induced hepcidin transcription in HepG2 cells. Serum treatment induced the expression of the AP-1 components c-fos and junB in primary hepatocytes and HepG2 cells. Forced expression of c-fos or junB enhanced the response of hepcidin transcription to serum treatment. By contrast, the expression of dominant negative (dn)-c-fos and dn-junB decreased hepcidin transcription. The present study reveals that serum contains factors stimulating hepcidin transcription. Basal BMP activity is essential for the serum-induced hepcidin transcription, although serum treatment does not stimulate the BMP pathway. The induction of c-fos and junB by serum treatment stimulates hepcidin transcription, through possibly cooperation with BMP-mediated signaling. Considering that AP-1 is induced by various stimuli, the present results suggest that hepcidin expression is regulated by more diverse factors than had been previously considered.
Collapse
Affiliation(s)
- Yohei Kanamori
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara 252-5201, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
|
10
|
Christerson U, Keita AV, Söderholm JD, Gustafson-Svärd C. Potential role of protease-activated receptor-2-stimulated activation of cytosolic phospholipase A(2) in intestinal myofibroblast proliferation: Implications for stricture formation in Crohn's disease. J Crohns Colitis 2009; 3:15-24. [PMID: 21172243 DOI: 10.1016/j.crohns.2008.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/17/2008] [Accepted: 10/01/2008] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Myofibroblast hyperplasia contributes to muscularis mucosae thickening and stricture formation in Crohn's disease (CD). Protease-activated receptor-2 (PAR-2) and cytosolic phospholipase A(2) (cPLA(2)) are known regulators of cell growth, but their significance in intestinal myofibroblast proliferation remain to be elucidated. The principle aims of the present study were to investigate if PAR-2 is expressed in the expanded muscularis mucosa in ileal CD specimens, if inflammatory cytokines may stimulate PAR-2 expression in intestinal myofibroblasts, and if PAR-2 and cPLA(2) may regulate intestinal myofibroblast growth. METHODS Immunohistochemistry was used for detection of PAR-2 in ileal CD specimens. Studies on PAR-2 expression, PLA(2) activation and cell growth were performed in a human intestinal myofibroblast cell line, CCD-18Co. PAR-2 expression was investigated by RT-PCR and immunocytochemistry. PLA(2) activity was analyzed by quantification of released (14)C-arachidonic acid ((14)C-AA). Cell growth was examined by (3)H-thymidine incorporation and cell counting. RESULTS The thickened muscularis mucosae of the CD specimens showed strong PAR-2 expression. In cultured myofibroblasts, tumor necrosis factor-α (TNF-α) up-regulated PAR-2 mRNA and protein, and potentiated PAR-2-stimulated (14)C-AA release by two known PAR-2 activators, trypsin and SLIGRL-NH(2). The release of (14)C-AA was dependent on cPLA(2). Trypsin stimulated the proliferation of serum-starved cells, and inhibition of cPLA(2) reduced normal cell growth and abolished the growth-promoting effect of trypsin. CONCLUSIONS The results suggest that PAR-2-mediated cPLA(2) activation might be of importance in intestinal myofibroblast proliferation. The results also point to the possibility that PAR-2 up-regulation by inflammatory cytokines, like TNF-α, may modulate this effect.
Collapse
Affiliation(s)
- Ulrika Christerson
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden
| | | | | | | |
Collapse
|
11
|
Zhao W, Gomez G, Yu SH, Ryan JJ, Schwartz LB. TGF-beta1 attenuates mediator release and de novo Kit expression by human skin mast cells through a Smad-dependent pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:7263-72. [PMID: 18981148 DOI: 10.4049/jimmunol.181.10.7263] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
TGF-beta has pleiotropic effects on many cell types at different stages of their development, including mast cells. The present study examines the effects of TGF-beta on human skin mast cells of the MC(TC) type. The expression of TGF-beta receptors (TGF-R) was verified at the mRNA and protein levels for TGF-RI and TGF-RII, and at the mRNA level for accessory molecules beta-glycan and endoglin. TGF-beta did not affect mast cell viability after 1 wk at concentrations < or = 10 ng/ml, but at 50 ng/ml caused significant cell death. TGF-beta inhibited surface and total expression of Kit in a dose-dependent manner, whereas the surface expression of Fc epsilonRI, Fc gammaRI, and Fc gammaRII was not affected. TGF-beta inhibited degranulation and cytokine production, but not PGD(2) production. TGF-beta diminished surface Kit expression through a TGF-RI kinase/Smad-dependent pathway by inhibiting new synthesis of Kit protein, which became evident following internalization and degradation of Kit after mast cells were exposed to the Kit ligand, stem cell factor. In contrast, addition of TGF-beta had no discernible effect on surface Kit expression when administered 3 days after stem cell factor, by which time surface Kit levels had returned to baseline. Although both transcription and translation are important for de novo expression of Kit, Kit mRNA levels were not affected by TGF-beta. Therefore, transcription of a gene other than Kit might be involved in Kit expression. Finally, activation of mast cells increased their susceptibility to TGF-beta-mediated apoptosis, a process that might regulate the survival of activated mast cells in vivo.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
12
|
Read CP, Word RA, Ruscheinsky MA, Timmons BC, Mahendroo MS. Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice. Reproduction 2007; 134:327-40. [PMID: 17660242 DOI: 10.1530/rep-07-0032] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cervical remodeling during pregnancy and parturition is a single progressive process that can be loosely divided into four overlapping phases termed softening, ripening, dilation/labor, and post partum repair. Elucidating the molecular mechanisms that facilitate all phases of cervical remodeling is critical for an understanding of parturition and for identifying processes that are misregulated in preterm labor, a significant cause of perinatal morbidity. In the present study, biomechanical measurements indicate that softening was initiated between gestation days 10 and 12 of mouse pregnancy, and in contrast to cervical ripening on day 18, the softened cervix maintains tissue strength. Although preceded by increased collagen solubility, cervical softening is not characterized by significant increases in cell proliferation, tissue hydration or changes in the distribution of inflammatory cells. Gene expression studies reveal a potentially important role of cervical epithelia during softening and ripening in maintenance of an immunomucosal barrier that protects the stromal compartment during matrix remodeling. Expression of two genes involved in repair and protection of the epithelial permeability barrier in the gut (trefoil factor 1) and skin (serine protease inhibitor Kazal type 5) were increased during softening and/or ripening. Another gene whose function remains to be elucidated, purkinje cell protein 4, declines in expression as remodeling progressed. Collectively, these results indicate that cervical softening during pregnancy is a unique phase of the tissue remodeling process characterized by increased collagen solubility, maintenance of tissue strength, and upregulation of genes involved in mucosal protection.
Collapse
Affiliation(s)
- Charles P Read
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | | | | | | | | |
Collapse
|
13
|
Saban R, Simpson C, Davis CA, Dozmorov I, Maier J, Fowler B, Ihnat MA, Hurst RE, Wershil BK, Saban MR. Transcription factor network downstream of protease activated receptors (PARs) modulating mouse bladder inflammation. BMC Immunol 2007; 8:17. [PMID: 17705868 PMCID: PMC2000913 DOI: 10.1186/1471-2172-8-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/17/2007] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND All four PARs are present in the urinary bladder, and their expression is altered during inflammation. In order to search for therapeutic targets other than the receptors themselves, we set forth to determine TFs downstream of PAR activation in the C57BL/6 urinary bladders. METHODS For this purpose, we used a protein/DNA combo array containing 345 different TF consensus sequences. Next, the TF selected was validated by EMSA and IHC. As mast cells seem to play a fundamental role in bladder inflammation, we determined whether c-kit receptor deficient (Kit w/Kit w-v) mice have an abrogated response to PAR stimulation. Finally, TFEB antibody was used for CHIP/Q-PCR assay and revealed up-regulation of genes known to be downstream of TFEB. RESULTS TFEB, a member of the MiTF family of basic helix-loop-helix leucine zipper, was the only TF commonly up-regulated by all PAR-APs. IHC results confirm a correlation between inflammation and TFEB expression in C57BL/6 mice. In contrast, Kit w/Kit w-v mice did not exhibit inflammation in response to PAR activation. EMSA results confirmed the increased TFEB binding activity in C57BL/6 but not in Kit w/Kit w-v mice. CONCLUSION This is the first report describing the increased expression of TFEB in bladder inflammation in response to PAR activation. As TFEB belongs to a family of TFs essential for mast cell survival, our findings suggest that this molecule may influence the participation of mast cells in PAR-mediated inflammation and that targeting TFEB/MiTF activity may be a novel approach for the treatment of bladder inflammatory disorders.
Collapse
Affiliation(s)
- Ricardo Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Cindy Simpson
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Carole A Davis
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Igor Dozmorov
- Oklahoma Medical Research Foundation (OMRF), Imaging Core Facility, Oklahoma City, Oklahoma 73104, USA
| | - Julie Maier
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray/Euk. Genomics Core Facility, Oklahoma City, Oklahoma 73104. USA
| | - Ben Fowler
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray/Euk. Genomics Core Facility, Oklahoma City, Oklahoma 73104. USA
| | - Michael A Ihnat
- Department of Cell Biology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Robert E Hurst
- Department of Urology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Barry K Wershil
- Albert Einstein College of Medicine Division of Pediatric GI and Nutrition The Children's Hospital at Montefiore Bronx, NY 10467, USA
| | - Marcia R Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Saban R, D'Andrea MR, Andrade-Gordon P, Derian CK, Dozmorov I, Ihnat MA, Hurst RE, Davis CA, Simpson C, Saban MR. Mandatory role of proteinase-activated receptor 1 in experimental bladder inflammation. BMC PHYSIOLOGY 2007; 7:4. [PMID: 17397548 PMCID: PMC1853108 DOI: 10.1186/1472-6793-7-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 03/30/2007] [Indexed: 02/07/2023]
Abstract
Background In general, inflammation plays a role in most bladder pathologies and represents a defense reaction to injury that often times is two edged. In particular, bladder neurogenic inflammation involves the participation of mast cells and sensory nerves. Increased mast cell numbers and tryptase release represent one of the prevalent etiologic theories for interstitial cystitis and other urinary bladder inflammatory conditions. The activity of mast cell-derived tryptase as well as thrombin is significantly increased during inflammation. Those enzymes activate specific G-protein coupled proteinase-activated receptors (PAR)s. Four PARs have been cloned so far, and not only are all four receptors highly expressed in different cell types of the mouse urinary bladder, but their expression is altered during experimental bladder inflammation. We hypothesize that PARs may link mast cell-derived proteases to bladder inflammation and, therefore, play a fundamental role in the pathogenesis of cystitis. Results Here, we demonstrate that in addition to the mouse urinary bladder, all four PA receptors are also expressed in the J82 human urothelial cell line. Intravesical administration of PAR-activating peptides in mice leads to an inflammatory reaction characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS), substance P, and antigen was strongly attenuated by PAR1-, and to a lesser extent, by PAR2-deficiency. Conclusion Our results reveal an overriding participation of PAR1 in bladder inflammation, provide a working model for the involvement of downstream signaling, and evoke testable hypotheses regarding the role of PARs in bladder inflammation. It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestations of cystitis.
Collapse
Affiliation(s)
- Ricardo Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael R D'Andrea
- J&J Pharmaceutical Research and Development Spring House, PA 19477-0776, USA
| | | | - Claudia K Derian
- J&J Pharmaceutical Research and Development Spring House, PA 19477-0776, USA
| | - Igor Dozmorov
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray/Euk. Genomics Core Facility, Oklahoma City, Oklahoma 73104, USA
| | - Michael A Ihnat
- Department of Cell Biology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Robert E Hurst
- Department of Urology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Carole A Davis
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Cindy Simpson
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marcia R Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|