1
|
Taylor KE, Miller LG, Contreras LM. RNA-binding proteins that preferentially interact with 8-oxoG-modified RNAs: our current understanding. Biochem Soc Trans 2024; 52:111-122. [PMID: 38174726 DOI: 10.1042/bst20230254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Cells encounter a variety of stresses throughout their lifetimes. Oxidative stress can occur via a myriad of factors, including exposure to chemical toxins or UV light. Importantly, these stressors induce chemical changes (e.g. chemical modifications) to biomolecules, such as RNA. Commonly, guanine is oxidized to form 8-oxo-7,8-hydroxyguanine (8-oxoG) and this modification can disrupt a plethora of cellular processes including messenger RNA translation and stability. Polynucleotide phosphorylase (PNPase), heterogeneous nuclear ribonucleoprotein D (HNRPD/Auf1), poly(C)-binding protein (PCBP1/HNRNP E1), and Y-box binding protein 1 (YB-1) have been identified as four RNA-binding proteins that preferentially bind 8-oxoG-modified RNA over unmodified RNA. All four proteins are native to humans and PNPase is additionally found in bacteria. Additionally, under oxidative stress, cell survival declines in mutants that lack PNPase, Auf1, or PCBP1, suggesting they are critical to the oxidative stress response. This mini-review captures the current understanding of the PNPase, HNRPD/Auf1, PCBP1, and YB-1 proteins and the mechanism that has been outlined so far by which they recognize and interact with 8-oxoG-modified RNAs.
Collapse
Affiliation(s)
- Kathleen E Taylor
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lucas G Miller
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Bárria C, Athayde D, Hernandez G, Fonseca L, Casinhas J, Cordeiro TN, Archer M, Arraiano CM, Brito JA, Matos RG. Structure and function of Campylobacter jejuni polynucleotide phosphorylase (PNPase): Insights into the role of this RNase in pathogenicity. Biochimie 2024; 216:56-70. [PMID: 37806617 DOI: 10.1016/j.biochi.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Ribonucleases are in charge of the processing, degradation and quality control of all cellular transcripts, which makes them crucial factors in RNA regulation. This post-transcriptional regulation allows bacteria to promptly react to different stress conditions and growth phase transitions, and also to produce the required virulence factors in pathogenic bacteria. Campylobacter jejuni is the main responsible for human gastroenteritis in the world. In this foodborne pathogen, exoribonuclease PNPase (CjPNP) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization. Here we report the crystallographic structure of CjPNP, complemented with SAXS, which confirms the characteristic doughnut-shaped trimeric arrangement and evaluates domain arrangement and flexibility. Mutations in highly conserved residues were constructed to access their role in RNA degradation and polymerization. Surprisingly, we found two mutations that altered CjPNP into a protein that is only capable of degrading RNA even in conditions that favour polymerization. These findings will be important to develop new strategies to combat C. jejuni infections.
Collapse
Affiliation(s)
- Cátia Bárria
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Diogo Athayde
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Guillem Hernandez
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Leonor Fonseca
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Jorge Casinhas
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Tiago N Cordeiro
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Margarida Archer
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Cecília M Arraiano
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José A Brito
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Rute G Matos
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
3
|
Falchi FA, Pizzoccheri R, Briani F. Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. Int J Mol Sci 2022; 23:ijms23031652. [PMID: 35163574 PMCID: PMC8836086 DOI: 10.3390/ijms23031652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.
Collapse
|
4
|
Kilchert C, Sträßer K, Kunetsky V, Änkö ML. From parts lists to functional significance-RNA-protein interactions in gene regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1582. [PMID: 31883228 DOI: 10.1002/wrna.1582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022]
Abstract
Hundreds of canonical RNA binding proteins facilitate diverse and essential RNA processing steps in cells forming a central regulatory point in gene expression. However, recent discoveries including the identification of a large number of noncanonical proteins bound to RNA have changed our view on RNA-protein interactions merely as necessary steps in RNA biogenesis. As the list of proteins interacting with RNA has expanded, so has the scope of regulation through RNA-protein interactions. In addition to facilitating RNA metabolism, RNA binding proteins help to form subcellular structures and membraneless organelles, and provide means to recruit components of macromolecular complexes to their sites of action. Moreover, RNA-protein interactions are not static in cells but the ribonucleoprotein (RNP) complexes are highly dynamic in response to cellular cues. The identification of novel proteins in complex with RNA and ways cells use these interactions to control cellular functions continues to broaden the scope of RNA regulation in cells and the current challenge is to move from cataloguing the components of RNPs into assigning them functions. This will not only facilitate our understanding of cellular homeostasis but may bring in key insights into human disease conditions where RNP components play a central role. This review brings together the classical view of regulation accomplished through RNA-protein interactions with the novel insights gained from the identification of RNA binding interactomes. We discuss the challenges in combining molecular mechanism with cellular functions on the journey towards a comprehensive understanding of the regulatory functions of RNA-protein interactions in cells. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications aRNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Vladislav Kunetsky
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Dos Santos RF, Quendera AP, Boavida S, Seixas AF, Arraiano CM, Andrade JM. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:101-155. [PMID: 30340785 DOI: 10.1016/bs.pmbts.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3'-5' exoribonucleases are key enzymes in the degradation of superfluous or aberrant RNAs and in the maturation of precursor RNAs into their functional forms. The major bacterial 3'-5' exoribonucleases responsible for both these activities are PNPase, RNase II and RNase R. These enzymes are of ancient nature with widespread distribution. In eukaryotes, PNPase and RNase II/RNase R enzymes can be found in the cytosol and in mitochondria and chloroplasts; RNase II/RNase R-like enzymes are also found in the nucleus. Humans express one PNPase (PNPT1) and three RNase II/RNase R family members (Dis3, Dis3L and Dis3L2). These enzymes take part in a multitude of RNA surveillance mechanisms that are critical for translation accuracy. Although active against a wide range of both coding and non-coding RNAs, the different 3'-5' exoribonucleases exhibit distinct substrate affinities. The latest studies on these RNA degradative enzymes have contributed to the identification of additional homologue proteins, the uncovering of novel RNA degradation pathways, and to a better comprehension of several disease-related processes and response to stress, amongst many other exciting findings. Here, we provide a comprehensive and up-to-date overview on the function, structure, regulation and substrate preference of the key 3'-5' exoribonucleases involved in RNA metabolism.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Boavida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
7
|
Casinhas J, Matos RG, Haddad N, Arraiano CM. Biochemical characterization of Campylobacter jejuni PNPase, an exoribonuclease important for bacterial pathogenicity. Biochimie 2018; 147:70-79. [PMID: 29339148 DOI: 10.1016/j.biochi.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Bacteria need to promptly respond to environmental changes. Ribonucleases (RNases) are key factors in the adaptation to new environments by enabling a rapid adjustment in RNA levels. The exoribonuclease polynucleotide phosphorylase (PNPase) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization in C. jejuni. However, the mechanism of action of this ribonuclease is not yet known. In this work we have characterized the biochemical activity of C. jejuni PNPase. Our results demonstrate that Cj-PNP is a processive 3' to 5' exoribonuclease that degrades single-stranded RNAs. Its activity is regulated according to the temperature and divalent ions. We have also shown that the KH and S1 domains are important for trimerization, RNA binding, and, consequently, for the activity of Cj-PNP. These findings will be helpful to develop new strategies for fighting against C. jejuni and may be extrapolated to other foodborne pathogens.
Collapse
Affiliation(s)
- Jorge Casinhas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Ava da República, 2780-157, Oeiras, Portugal.
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Ava da República, 2780-157, Oeiras, Portugal.
| | - Nabila Haddad
- SECALIM, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France.
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Ava da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
8
|
Carzaniga T, Sbarufatti G, Briani F, Dehò G. Polynucleotide phosphorylase is implicated in homologous recombination and DNA repair in Escherichia coli. BMC Microbiol 2017; 17:81. [PMID: 28376742 PMCID: PMC5379764 DOI: 10.1186/s12866-017-0980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/25/2017] [Indexed: 11/22/2022] Open
Abstract
Background Polynucleotide phosphorylase (PNPase, encoded by pnp) is generally thought of as an enzyme dedicated to RNA metabolism. The pleiotropic effects of PNPase deficiency is imputed to altered processing and turnover of mRNAs and small RNAs, which in turn leads to aberrant gene expression. However, it has long since been known that this enzyme may also catalyze template-independent polymerization of dNDPs into ssDNA and the reverse phosphorolytic reaction. Recently, PNPase has been implicated in DNA recombination, repair, mutagenesis and resistance to genotoxic agents in diverse bacterial species, raising the possibility that PNPase may directly, rather than through control of gene expression, participate in these processes. Results In this work we present evidence that in Escherichia coli PNPase enhances both homologous recombination upon P1 transduction and error prone DNA repair of double strand breaks induced by zeocin, a radiomimetic agent. Homologous recombination does not require PNPase phosphorolytic activity and is modulated by its RNA binding domains whereas error prone DNA repair of zeocin-induced DNA damage is dependent on PNPase catalytic activity and cannot be suppressed by overexpression of RNase II, the other major enzyme (encoded by rnb) implicated in exonucleolytic RNA degradation. Moreover, E. coli pnp mutants are more sensitive than the wild type to zeocin. This phenotype depends on PNPase phosphorolytic activity and is suppressed by rnb, thus suggesting that zeocin detoxification may largely depend on RNA turnover. Conclusions Our data suggest that PNPase may participate both directly and indirectly through regulation of gene expression to several aspects of DNA metabolism such as recombination, DNA repair and resistance to genotoxic agents.
Collapse
Affiliation(s)
- Thomas Carzaniga
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, 20133, Italy.,Present address: Dipartimento di Biotecnologie mediche e medicina traslazionale, Università degli Studi di Milano, via F.lli Cervi 93, Segrate, MI, 20090, Italy
| | - Giulia Sbarufatti
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, 20133, Italy.,Present address: Eurofins BioPharma Product Testing Italy, Eurofins Biolab srl, via Bruno Buozzi, 2, Vimodrone, 20090, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, 20133, Italy
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, 20133, Italy.
| |
Collapse
|
9
|
Bandyra KJ, Sinha D, Syrjanen J, Luisi BF, De Lay NR. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes. RNA (NEW YORK, N.Y.) 2016; 22:360-72. [PMID: 26759452 PMCID: PMC4748814 DOI: 10.1261/rna.052886.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/29/2015] [Indexed: 05/22/2023]
Abstract
In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3'-to-5' exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3' ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action.
Collapse
Affiliation(s)
- Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Dhriti Sinha
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | - Johanna Syrjanen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Briani F, Carzaniga T, Dehò G. Regulation and functions of bacterial PNPase. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:241-58. [PMID: 26750178 DOI: 10.1002/wrna.1328] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 01/29/2023]
Abstract
Polynucleotide phosphorylase (PNPase) is an exoribonuclease that catalyzes the processive phosphorolytic degradation of RNA from the 3'-end. The enzyme catalyzes also the reverse reaction of polymerization of nucleoside diphosphates that has been implicated in the generation of heteropolymeric tails at the RNA 3'-end. The enzyme is widely conserved and plays a major role in RNA decay in both Gram-negative and Gram-positive bacteria. Moreover, it participates in maturation and quality control of stable RNA. PNPase autoregulates its own expression at post-transcriptional level through a complex mechanism that involves the endoribonuclease RNase III and translation control. The activity of PNPase is modulated in an intricate and still unclear manner by interactions with small molecules and recruitment in different multiprotein complexes. Not surprisingly, given the wide spectrum of PNPase substrates, PNPase-defective mutations in different bacterial species have pleiotropic effects and perturb the execution of genetic programs involving drastic changes in global gene expression such as biofilm formation, growth at suboptimal temperatures, and virulence.
Collapse
Affiliation(s)
- Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Thomas Carzaniga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Deutscher MP. How bacterial cells keep ribonucleases under control. FEMS Microbiol Rev 2015; 39:350-61. [PMID: 25878039 DOI: 10.1093/femsre/fuv012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
Ribonucleases (RNases) play an essential role in essentially every aspect of RNA metabolism, but they also can be destructive enzymes that need to be regulated to avoid unwanted degradation of RNA molecules. As a consequence, cells have evolved multiple strategies to protect RNAs against RNase action. They also utilize a variety of mechanisms to regulate the RNases themselves. These include post-transcriptional regulation, post-translational modification, trans-acting inhibitors, cellular localization, as well as others that are less well studied. In this review, I will briefly discuss how RNA molecules are protected and then examine in detail our current understanding of the mechanisms known to regulate individual RNases.
Collapse
Affiliation(s)
- Murray P Deutscher
- Biochemistry & Molecular Biology, University of Miami, Miami, FL 33136-6129, USA
| |
Collapse
|
12
|
RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression. J Bacteriol 2015; 197:1931-8. [PMID: 25825432 DOI: 10.1128/jb.00105-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The complex posttranscriptional regulation mechanism of the Escherichia coli pnp gene, which encodes the phosphorolytic exoribonuclease polynucleotide phosphorylase (PNPase), involves two endoribonucleases, namely, RNase III and RNase E, and PNPase itself, which thus autoregulates its own expression. The models proposed for pnp autoregulation posit that the target of PNPase is a mature pnp mRNA previously processed at its 5' end by RNase III, rather than the primary pnp transcript (RNase III-dependent models), and that PNPase activity eventually leads to pnp mRNA degradation by RNase E. However, some published data suggest that pnp expression may also be regulated through a PNPase-dependent, RNase III-independent mechanism. To address this issue, we constructed isogenic Δpnp rnc(+) and Δpnp Δrnc strains with a chromosomal pnp-lacZ translational fusion and measured β-galactosidase activity in the absence and presence of PNPase expressed by a plasmid. Our results show that PNPase also regulates its own expression via a reversible RNase III-independent pathway acting upstream from the RNase III-dependent branch. This pathway requires the PNPase RNA binding domains KH and S1 but not its phosphorolytic activity. We suggest that the RNase III-independent autoregulation of PNPase occurs at the level of translational repression, possibly by competition for pnp primary transcript between PNPase and the ribosomal protein S1. IMPORTANCE In Escherichia coli, polynucleotide phosphorylase (PNPase, encoded by pnp) posttranscriptionally regulates its own expression. The two models proposed so far posit a two-step mechanism in which RNase III, by cutting the leader region of the pnp primary transcript, creates the substrate for PNPase regulatory activity, eventually leading to pnp mRNA degradation by RNase E. In this work, we provide evidence supporting an additional pathway for PNPase autogenous regulation in which PNPase acts as a translational repressor independently of RNase III cleavage. Our data make a new contribution to the understanding of the regulatory mechanism of pnp mRNA, a process long since considered a paradigmatic example of posttranscriptional regulation at the level of mRNA stability.
Collapse
|
13
|
Carzaniga T, Mazzantini E, Nardini M, Regonesi ME, Greco C, Briani F, De Gioia L, Dehò G, Tortora P. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding. Biochimie 2013; 97:49-59. [PMID: 24075876 DOI: 10.1016/j.biochi.2013.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/16/2013] [Indexed: 11/27/2022]
Abstract
Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.
Collapse
Affiliation(s)
- Thomas Carzaniga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Elisa Mazzantini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Maria Elena Regonesi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Claudio Greco
- Dipartimento di Scienze dell'ambiente e del territorio e di Scienze della terra, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Luca De Gioia
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Paolo Tortora
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| |
Collapse
|
14
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
15
|
Burger A, Whiteley C, Boshoff A. Current perspectives of the Escherichia coli RNA degradosome. Biotechnol Lett 2011; 33:2337-50. [DOI: 10.1007/s10529-011-0713-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
|
16
|
Silva IJ, Saramago M, Dressaire C, Domingues S, Viegas SC, Arraiano CM. Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:818-36. [PMID: 21976285 DOI: 10.1002/wrna.94] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Inês Jesus Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Structure and Degradation Mechanisms of 3′ to 5′ Exoribonucleases. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2011. [DOI: 10.1007/978-3-642-21078-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Németi B, Regonesi ME, Tortora P, Gregus Z. The mechanism of the polynucleotide phosphorylase-catalyzed arsenolysis of ADP. Biochimie 2010; 93:624-7. [PMID: 21130834 DOI: 10.1016/j.biochi.2010.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
Using ADP and arsenate (AsV), polynucleotide phosphorylase (PNPase) catalyzes the apparent arsenolysis of ADP to AMP-arsenate and inorganic phosphate, with the former hydrolyzing rapidly into AMP and AsV. However, in the presence of glutathione, AMP-arsenate may also undergo reductive decomposition, yielding AMP and arsenite (AsIII). In order to clarify the mechanism of ADP arsenolysis mediated by Escherichia coli PNPase, we analyzed the time course of the reaction in the presence of increasing concentrations of ADP, with or without polyadenylate (poly-A) supplementation. These studies revealed that increasing supply of ADP enhanced the consumption of ADP but inhibited the production of both AMP and AsIII. Formation of these products was amplified by adding trace amount of poly-A. Furthermore, AMP and AsIII production accelerated with time, whereas ADP consumption slowed down. These observations collectively suggest that PNPase does not catalyze the arsenolysis of ADP directly (in a single step), but in two separate consecutive steps: the enzyme first converts ADP into poly-A, then it cleaves the newly synthesized poly-A by arsenolysis. It is inferred that one active site of PNPase can catalyze only one of these reactions at a time and that high ADP concentrations favor poly-A synthesis, thereby inhibiting the arsenolysis.
Collapse
Affiliation(s)
- Balázs Németi
- Department of Pharmacology and Pharmacotherapy, Toxicology Section, University of Pécs, Medical School, Szigeti út 12, Pécs, Hungary
| | | | | | | |
Collapse
|
19
|
Abstract
One of the many important consequences that temperature down-shift has on cells is stabilization of secondary structures of RNAs. This stabilization has wide-spread effects, such as inhibition of expression of several genes due to termination of their transcription and inefficient RNA degradation that adversely affect cell growth at low temperature. Several cold shock proteins are produced to counteract these effects and thus allow cold acclimatization of the cell. The main RNA modulating cold shock proteins of E. coli can be broadly divided into two categories, (1) the CspA family proteins, which mainly affect the transcription and possibly translation at low temperature through their RNA chaperoning function and (2) RNA helicases and exoribonucleases that stimulate RNA degradation at low temperature through their RNA unwinding activity.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, CABM, Piscataway, NJ, USA
| | | |
Collapse
|
20
|
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883-923. [PMID: 20659169 DOI: 10.1111/j.1574-6976.2010.00242.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.
Collapse
Affiliation(s)
- Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Siculella L, Damiano F, di Summa R, Tredici SM, Alduina R, Gnoni GV, Alifano P. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) as a negative modulator of polynucleotide phosphorylase activity in a 'rare' actinomycete. Mol Microbiol 2010; 77:716-29. [PMID: 20545843 DOI: 10.1111/j.1365-2958.2010.07240.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the beginning of the idiophase the highly phosphorylated guanylic nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp), collectively referred to as (p)ppGpp, activate stress survival adaptation programmes and trigger secondary metabolism in actinomycetes. The major target of (p)ppGpp is the RNA polymerase, where it binds altering the enzyme activity. In this study analysis of the polynucleotide phosphorylase (PNPase)-encoding gene pnp mRNA, in Nonomuraea sp. ATCC 39727 wild-type, constitutively stringent and relaxed strains, led us to hypothesize that in actinomycetes (p)ppGpp may modulate gene expression at the level of RNA decay also. This hypothesis was supported by: (i) in vitro evidence that ppGpp, at physiological levels, inhibited both polynucleotide polymerase and phosphorolytic activities of PNPase in Nonomuraea sp., but not in Escherichia coli, (ii) in vivo data showing that the pnp mRNA and the A40926 antibiotic cluster-specific dpgA mRNA were stabilized during the idiophase in the wild-type strain but not in a relaxed mutant and (iii) measurement of chemical decay of pulse-labelled bulk mRNA. The results of biochemical tests suggest competitive inhibition of ppGpp with respect to nucleoside diphosphates in polynucleotide polymerase assays and mixed inhibition with respect to inorganic phosphate when the RNA phosphorolytic activity was determined.
Collapse
Affiliation(s)
- Luisa Siculella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Németi B, Regonesi ME, Tortora P, Gregus Z. Polynucleotide phosphorylase and mitochondrial ATP synthase mediate reduction of arsenate to the more toxic arsenite by forming arsenylated analogues of ADP and ATP. Toxicol Sci 2010; 117:270-81. [PMID: 20457661 DOI: 10.1093/toxsci/kfq141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have demonstrated that phosphorolytic-arsenolytic enzymes can promote reduction of arsenate (AsV) into the more toxic arsenite (AsIII) because they convert AsV into an arsenylated product in which the arsenic is more reducible by glutathione (GSH) or other thiols to AsIII than in inorganic AsV. We have also shown that mitochondria can rapidly reduce AsV in a process requiring intact oxidative phosphorylation and intramitochondrial GSH. Thus, these organelles might reduce AsV because mitochondrial ATP synthase, using AsV instead of phosphate, arsenylates ADP to ADP-AsV, which in turn is readily reduced by GSH. To test this hypothesis, we first examined whether the RNA-cleaving enzyme polynucleotide phosphorylase (PNPase), which can split poly-adenylate (poly-A) by arsenolysis into units of AMP-AsV (a homologue of ADP-AsV), could also promote reduction of AsV to AsIII in presence of thiols. Indeed, bacterial PNPase markedly facilitated formation of AsIII when incubated with poly-A, AsV, and GSH. PNPase-mediated AsV reduction depended on arsenolysis of poly-A and presence of a thiol. PNPase can also form AMP-AsV from ADP and AsV (termed arsenolysis of ADP). In presence of GSH, this reaction also facilitated AsV reduction in proportion to AMP-AsV production. Although various thiols did not influence the arsenolytic yield of AMP-AsV, they differentially promoted the PNPase-mediated reduction of AsV, with GSH being the most effective. Circumstantial evidence indicated that AMP-AsV formed by PNPase is more reducible to AsIII by GSH than inorganic AsV. Then, we demonstrated that AsV reduction by isolated mitochondria was markedly inhibited by an ADP analogue that enters mitochondria but is not phosphorylated or arsenylated. Furthermore, inhibitors of the export of ATP or ADP-AsV from the mitochondria diminished the increment in AsV reduction caused by adding GSH externally to these organelles whose intramitochondrial GSH had been depleted. Thus, whereas PNPase promotes reduction of AsV by incorporating it into AMP-AsV, the mitochondrial ATP synthase facilitates AsV reduction by forming ADP-AsV; then GSH can easily reduce these arsenylated nucleotides to AsIII.
Collapse
Affiliation(s)
- Balázs Németi
- Department of Pharmacology and Pharmacotherapy, Toxicology Section, University of Pécs, Medical School, H-7624 Pécs, Hungary
| | | | | | | |
Collapse
|
23
|
Nucleic acid and protein factors involved in Escherichia coli polynucleotide phosphorylase function on RNA. Biochimie 2010; 92:445-54. [PMID: 20114069 DOI: 10.1016/j.biochi.2010.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 01/08/2010] [Indexed: 11/22/2022]
Abstract
It has been reported that polynucleotide phosphorylase (PNPase) binds to RNA via KH and S1 domains, and at least two main complexes (I and II) have been observed in RNA-binding assays. Here we describe PNPase binding to RNA, the factors involved in this activity and the nature of the interactions observed in vitro. Our results show that RNA length and composition affect PNPase binding, and that PNPase interacts primarily with the 3' end of RNA, forming the complex I-RNA, which contains trimeric units of PNPase. When the 5' end of RNA is blocked by a hybridizing oligonucleotide, the formation of complex II-RNA is inhibited. In addition, PNPase was found to form high molecular weight (>440 kDa) aggregates in vitro in the absence of RNA, which may correspond to the hexameric form of the enzyme. We confirmed that PNPase in vitro RNA binding, degradation and polyadenylation activities depend on the integrity of KH and S1 domains. These results can explain the defective in vivo autoregulation of PNPase71, a KH point substitution mutant. As previously reported, optimal growth of a cold-sensitive strain at 18 degrees C requires a fully active PNPase, however, we show that overexpression of a novel PNPaseDeltaS1 partially compensated the growth impairment of this strain, while PNPase71 showed a minor compensation effect. Finally, we propose a mechanism of PNPase interactions and discuss their implications in PNPase function.
Collapse
|
24
|
Nurmohamed S, Vaidialingam B, Callaghan AJ, Luisi BF. Crystal structure of Escherichia coli polynucleotide phosphorylase core bound to RNase E, RNA and manganese: implications for catalytic mechanism and RNA degradosome assembly. J Mol Biol 2009; 389:17-33. [PMID: 19327365 PMCID: PMC2723993 DOI: 10.1016/j.jmb.2009.03.051] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 11/03/2022]
Abstract
Polynucleotide phosphorylase (PNPase) is a processive exoribonuclease that contributes to messenger RNA turnover and quality control of ribosomal RNA precursors in many bacterial species. In Escherichia coli, a proportion of the PNPase is recruited into a multi-enzyme assembly, known as the RNA degradosome, through an interaction with the scaffolding domain of the endoribonuclease RNase E. Here, we report crystal structures of E. coli PNPase complexed with the recognition site from RNase E and with manganese in the presence or in the absence of modified RNA. The homotrimeric PNPase engages RNase E on the periphery of its ring-like architecture through a pseudo-continuous anti-parallel beta-sheet. A similar interaction pattern occurs in the structurally homologous human exosome between the Rrp45 and Rrp46 subunits. At the centre of the PNPase ring is a tapered channel with an adjustable aperture where RNA bases stack on phenylalanine side chains and trigger structural changes that propagate to the active sites. Manganese can substitute for magnesium as an essential co-factor for PNPase catalysis, and our crystal structure of the enzyme in complex with manganese suggests how the metal is positioned to stabilise the transition state. We discuss the implications of these structural observations for the catalytic mechanism of PNPase, its processive mode of action, and its assembly into the RNA degradosome.
Collapse
|
25
|
Autogenous regulation of Escherichia coli polynucleotide phosphorylase expression revisited. J Bacteriol 2009; 191:1738-48. [PMID: 19136586 DOI: 10.1128/jb.01524-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5'-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5' end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5' double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5' end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5' fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript.
Collapse
|
26
|
Andrade JM, Pobre V, Silva IJ, Domingues S, Arraiano CM. The role of 3'-5' exoribonucleases in RNA degradation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:187-229. [PMID: 19215773 DOI: 10.1016/s0079-6603(08)00805-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA degradation is a major process controlling RNA levels and plays a central role in cell metabolism. From the labile messenger RNA to the more stable noncoding RNAs (mostly rRNA and tRNA, but also the expanding class of small regulatory RNAs) all molecules are eventually degraded. Elimination of superfluous transcripts includes RNAs whose expression is no longer required, but also the removal of defective RNAs. Consequently, RNA degradation is an inherent step in RNA quality control mechanisms. Furthermore, it contributes to the recycling of the nucleotide pool in the cell. Escherichia coli has eight 3'-5' exoribonucleases, which are involved in multiple RNA metabolic pathways. However, only four exoribonucleases appear to accomplish all RNA degradative activities: polynucleotide phosphorylase (PNPase), ribonuclease II (RNase II), RNase R, and oligoribonuclease. Here, we summarize the available information on the role of bacterial 3'-5' exoribonucleases in the degradation of different substrates, highlighting the most recent data that have contributed to the understanding of the diverse modes of operation of these degradative enzymes.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Qeiras, Portugal
| | | | | | | | | |
Collapse
|
27
|
Shi Z, Yang WZ, Lin-Chao S, Chak KF, Yuan HS. Crystal structure of Escherichia coli PNPase: central channel residues are involved in processive RNA degradation. RNA (NEW YORK, N.Y.) 2008; 14:2361-71. [PMID: 18812438 PMCID: PMC2578853 DOI: 10.1261/rna.1244308] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bacterial polynucleotide phosphorylase (PNPase) plays a major role in mRNA turnover by the degradation of RNA from the 3'- to 5'-ends. Here, we determined the crystal structures of the wild-type and a C-terminal KH/S1 domain-truncated mutant (DeltaKH/S1) of Escherichia coli PNPase at resolutions of 2.6 A and 2.8 A, respectively. The six RNase PH domains of the trimeric PNPase assemble into a ring-like structure containing a central channel. The truncated mutant DeltaKH/S1 bound and cleaved RNA less efficiently with an eightfold reduced binding affinity. Thermal melting and acid-induced trimer dissociation studies, analyzed by circular dichroism and dynamic light scattering, further showed that DeltaKH/S1 formed a less stable trimer than the full-length PNPase. The crystal structure of DeltaKH/S1 is more expanded, containing a slightly wider central channel than that of the wild-type PNPase, suggesting that the KH/S1 domain helps PNPase to assemble into a more compact trimer, and it regulates the channel size allosterically. Moreover, site-directed mutagenesis of several arginine residues in the channel neck regions produced defective PNPases that either bound and cleaved RNA less efficiently or generated longer cleaved oligonucleotide products, indicating that these arginines were involved in RNA binding and processive degradation. Taking these results together, we conclude that the constricted central channel and the basic-charged residues in the channel necks of PNPase play crucial roles in trapping RNA for processive exonucleolytic degradation.
Collapse
Affiliation(s)
- Zhonghao Shi
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
28
|
Abstract
This review focuses on the cold shock response of Escherichia coli. Change in temperature is one of the most common stresses that an organism encounters in nature. Temperature downshift affects the cell on various levels: (i) decrease in the membrane fluidity; (ii) stabilization of the secondary structures of RNA and DNA; (iii) slow or inefficient protein folding; (iv) reduced ribosome function, affecting translation of non-cold shock proteins; (v) increased negative supercoiling of DNA; and (vi) accumulation of various sugars. Cold shock proteins and certain sugars play a key role in dealing with the initial detrimental effect of cold shock and maintaining the continued growth of the organism at low temperature. CspA is the major cold shock protein of E. coli, and its homologues are found to be widespread among bacteria, including psychrophilic, psychrotrophic, mesophilic, and thermophilic bacteria, but are not found in archaea or cyanobacteria. Significant, albeit transient, stabilization of the cspA mRNA immediately following temperature downshift is mainly responsible for its cold shock induction. Various approaches were used in studies to detect cold shock induction of cspA mRNA. Sugars are shown to confer protection to cells undergoing cold shock. The study of the cold shock response has implications in basic and health-related research as well as in commercial applications. The cold shock response is elicited by all types of bacteria and affects these bacteria at various levels, such as cell membrane, transcription, translation, and metabolism.
Collapse
|
29
|
Del Favero M, Mazzantini E, Briani F, Zangrossi S, Tortora P, Dehò G. Regulation of Escherichia coli polynucleotide phosphorylase by ATP. J Biol Chem 2008; 283:27355-27359. [PMID: 18650428 DOI: 10.1074/jbc.c800113200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase), an enzyme conserved in bacteria and eukaryotic organelles, processively catalyzes the phosphorolysis of RNA, releasing nucleotide diphosphates, and the reverse polymerization reaction. In Escherichia coli, both reactions are implicated in RNA decay, as addition of either poly(A) or heteropolymeric tails targets RNA to degradation. PNPase may also be associated with the RNA degradosome, a heteromultimeric protein machine that can degrade highly structured RNA. Here, we report that ATP binds to PNPase and allosterically inhibits both its phosphorolytic and polymerization activities. Our data suggest that PNPase-dependent RNA tailing and degradation occur mainly at low ATP concentrations, whereas other enzymes may play a more significant role at high energy charge. These findings connect RNA turnover with the energy charge of the cell and highlight unforeseen metabolic roles of PNPase.
Collapse
Affiliation(s)
- Marta Del Favero
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | - Elisa Mazzantini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | - Federica Briani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | - Sandro Zangrossi
- Centro di Studio del Consiglio Nazionale delle Ricerche sulla Biologia Cellulare e Molecolare delle Piante, 20133 Milan, Italy
| | - Paolo Tortora
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | - Gianni Dehò
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
30
|
RNase activity of polynucleotide phosphorylase is critical at low temperature in Escherichia coli and is complemented by RNase II. J Bacteriol 2008; 190:5924-33. [PMID: 18606734 DOI: 10.1128/jb.00500-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the cold shock response is exerted upon a temperature change from 37 degrees C to 15 degrees C and is characterized by induction of several cold shock proteins, including polynucleotide phosphorylase (PNPase), during acclimation phase. In E. coli, PNPase is essential for growth at low temperatures; however, its exact role in this essential function has not been fully elucidated. PNPase is a 3'-to-5' exoribonuclease and promotes the processive degradation of RNA. Our screening of an E. coli genomic library for an in vivo counterpart of PNPase that can compensate for its absence at low temperature revealed only one protein, another 3'-to-5' exonuclease, RNase II. Here we show that the RNase PH domains 1 and 2 of PNPase are important for its cold shock function, suggesting that the RNase activity of PNPase is critical for its essential function at low temperature. We also show that its polymerization activity is dispensable in its cold shock function. Interestingly, the third 3'-to-5' processing exoribonuclease, RNase R of E. coli, which is cold inducible, cannot complement the cold shock function of PNPase. We further show that this difference is due to the different targets of these enzymes and stabilization of some of the PNPase-sensitive mRNAs, like fis, in the Delta pnp cells has consequences, such as accumulation of ribosomal subunits in the Delta pnp cells, which may play a role in the cold sensitivity of this strain.
Collapse
|
31
|
Chen HW, Koehler CM, Teitell MA. Human polynucleotide phosphorylase: location matters. Trends Cell Biol 2007; 17:600-8. [DOI: 10.1016/j.tcb.2007.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/01/2007] [Accepted: 09/03/2007] [Indexed: 01/21/2023]
|