1
|
Smith A, Zhang I, Trang P, Liu F. Engineering of RNase P Ribozymes for Therapy against Human Cytomegalovirus Infection. Viruses 2024; 16:1196. [PMID: 39205170 PMCID: PMC11360822 DOI: 10.3390/v16081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Nucleic acid-based gene interference and editing strategies, such as antisense oligonucleotides, ribozymes, RNA interference (RNAi), and CRISPR/Cas9 coupled with guide RNAs, are exciting research tools and show great promise for clinical applications in treating various illnesses. RNase P ribozymes have been engineered for therapeutic applications against human viruses such as human cytomegalovirus (HCMV). M1 ribozyme, the catalytic RNA subunit of RNase P from Escherichia coli, can be converted into a sequence-specific endonuclease, M1GS ribozyme, which is capable of hydrolyzing an mRNA target base-pairing with the guide sequence. M1GS RNAs have been shown to hydrolyze essential HCMV mRNAs and block viral progeny production in virus-infected cell cultures. Furthermore, RNase P ribozyme variants with enhanced hydrolyzing activity can be generated by employing in vitro selection procedures and exhibit better ability in suppressing HCMV gene expression and replication in cultured cells. Additional studies have also examined the antiviral activity of RNase P ribozymes in mice in vivo. Using cytomegalovirus infection as an example, this review summarizes the principles underlying RNase P ribozyme-mediated gene inactivation, presents recent progress in engineering RNase P ribozymes for applications in vitro and in mice, and discusses the prospects of using M1GS technology for therapeutic applications against HCMV as well as other pathogenic viruses.
Collapse
Affiliation(s)
- Adam Smith
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Huang T, Chamberlain A, Zhu J, Harris ME. A minimal RNA substrate with dual fluorescent probes enables rapid kinetics and provides insight into bacterial RNase P active site interactions. RSC Chem Biol 2024; 5:652-668. [PMID: 38966670 PMCID: PMC11221534 DOI: 10.1039/d4cb00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Bacterial ribonuclease P (RNase P) is a tRNA processing endonuclease that occurs primarily as a ribonucleoprotein with a catalytic RNA subunit (P RNA). As one of the first ribozymes discovered, P RNA is a well-studied model system for understanding RNA catalysis and substrate recognition. Extensive structural and biochemical studies have revealed the structure of RNase P bound to precursor tRNA (ptRNA) and product tRNA. These studies also helped to define active site residues and propose the molecular interactions that are involved in substrate binding and catalysis. However, a detailed quantitative model of the reaction cycle that includes the structures of intermediates and the process of positioning active site metal ions for catalysis is lacking. To further this goal, we used a chemically modified minimal RNA duplex substrate (MD1) to establish a kinetic framework for measuring the functional effects of P RNA active site mutations. Substitution of U69, a critical nucleotide involved in active site Mg2+ binding, was found to reduce catalysis >500-fold as expected, but had no measurable effect on ptRNA binding kinetics. In contrast, the same U69 mutations had little effect on catalysis in Ca2+ compared to reactions containing native Mg2+ ions. CryoEM structures and SHAPE mapping suggested increased flexibility of U69 and adjacent nucleotides in Ca2+ compared to Mg2+. These results support a model in which slow catalysis in Ca2+ is due to inability to engage U69. These studies establish a set of experimental tools to analyze RNase P kinetics and mechanism and can be expanded to gain new insights into the assembly of the active RNase P-ptRNA complex.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | | | - Jiaqiang Zhu
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | - Michael E Harris
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| |
Collapse
|
3
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
4
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Trang P, Zhang I, Liu F. In Vitro Amplification and Selection of Engineered RNase P Ribozyme for Gene Targeting Applications. Methods Mol Biol 2024; 2822:419-429. [PMID: 38907932 DOI: 10.1007/978-1-0716-3918-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Ribozymes engineered from the RNase P catalytic RNA (M1 RNA) represent promising gene-targeting agents for clinical applications. We describe in this report an in vitro amplification and selection procedure for generating active RNase P ribozyme variants with improved catalytic efficiency. Using the amplification and selection procedure, we have previously generated ribozyme variants that were highly active in cleaving a herpes simplex virus 1-encoded mRNA in vitro and inhibiting its expression in virally infected human cells. In this chapter, we use an overlapping region of the mRNAs for the IE1 and IE2 proteins of human cytomegalovirus (HCMV) as a target substrate. We provide detailed protocols and include methods for establishing the procedure for the amplification and selection of active mRNA-cleaving RNase P ribozymes. The in vitro amplification and selection system represents an excellent approach for engineering highly active RNase P ribozymes that can be used in both basic research and clinical applications.
Collapse
Affiliation(s)
- Phong Trang
- School of Public Health, University of California, Berkeley, CA, USA
| | - Isadora Zhang
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA, USA.
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
6
|
Liu Y, Chen YC, Yan B, Liu F. Suppressing Kaposi's Sarcoma-Associated Herpesvirus Lytic Gene Expression and Replication by RNase P Ribozyme. Molecules 2023; 28:molecules28083619. [PMID: 37110852 PMCID: PMC10142857 DOI: 10.3390/molecules28083619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Kaposi's sarcoma, an AIDS-defining illness, is caused by Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus. In this study, we engineered ribozymes derived from ribonuclease P (RNase P) catalytic RNA with targeting against the mRNA encoding KSHV immediate early replication and transcription activator (RTA), which is vital for KSHV gene expression. The functional ribozyme F-RTA efficiently sliced the RTA mRNA sequence in vitro. In cells, KSHV production was suppressed with ribozyme F-RTA expression by 250-fold, and RTA expression was suppressed by 92-94%. In contrast, expression of control ribozymes hardly affected RTA expression or viral production. Further studies revealed both overall KSHV early and late gene expression and viral growth decreased because of F-RTA-facilitated suppression of RTA expression. Our results indicate the first instance of RNase P ribozymes having potential for use in anti-KSHV therapy.
Collapse
Affiliation(s)
- Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Jarrous N, Liu F. Human RNase P: overview of a ribonuclease of interrelated molecular networks and gene-targeting systems. RNA (NEW YORK, N.Y.) 2023; 29:300-307. [PMID: 36549864 PMCID: PMC9945436 DOI: 10.1261/rna.079475.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/09/2022] [Indexed: 05/14/2023]
Abstract
The seminal discovery of ribonuclease P (RNase P) and its catalytic RNA by Sidney Altman has not only revolutionized our understanding of life, but also opened new fields for scientific exploration and investigation. This review focuses on human RNase P and its use as a gene-targeting tool, two topics initiated in Altman's laboratory. We outline early works on human RNase P as a tRNA processing enzyme and comment on its expanding nonconventional functions in molecular networks of transcription, chromatin remodeling, homology-directed repair, and innate immunity. The important implications and insights from these discoveries on the potential use of RNase P as a gene-targeting tool are presented. This multifunctionality calls to a modified structure-function partitioning of domains in human RNase P, as well as its relative ribonucleoprotein, RNase MRP. The role of these two catalysts in innate immunity is of particular interest in molecular evolution, as this dynamic molecular network could have originated and evolved from primordial enzymes and sensors of RNA, including predecessors of these two ribonucleoproteins.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 9112010, Israel
| | - Fenyong Liu
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Trang P, Smith A, Liu F. Mapping of RNase P Ribozyme Regions in Proximity with a Human RNase P Subunit Protein Using Fe(II)-EDTA Cleavage and Nuclease Footprint Analyses. Methods Mol Biol 2023; 2666:55-67. [PMID: 37166656 DOI: 10.1007/978-1-0716-3191-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ribonuclease P (RNase P), which may consist of both protein subunits and a catalytic RNA part, is responsible for 5' maturation of tRNA by cleaving the 5'-leader sequence. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 RNA) and a protein factor (C5 protein). In human cells, RNase P holoenzyme consists of an RNA subunit (H1 RNA) and multiple protein subunits that include human RPP29 protein. M1GS, a sequence specific targeting ribozyme derived from M1 RNA, can be constructed to target a specific mRNA to degrade it in vitro. Recent studies have shown that M1GS ribozymes are efficient in blocking the expression of viral mRNAs in cultured cells and in animals. These results suggest that RNase P ribozymes have the potential to be useful in basic research and in clinical applications. It has been shown that RNase P binding proteins, such as C5 protein and RPP29, can enhance the activities of M1GS RNA in processing a natural tRNA substrate and a target mRNA. Understanding how RPP29 binds to M1GS RNA and enhances the enzyme's catalytic activity will provide great insight into developing more robust gene-targeting ribozymes for in vivo application. In this chapter, we describe the methods of using Fe(II)-ethylenediaminetetraacetic acid (EDTA) cleavage and nuclease footprint analyses to determine the regions of a M1GS ribozyme that are in proximity to RPP29 protein.
Collapse
Affiliation(s)
- Phong Trang
- School of Public Health, University of California, Berkeley, CA, USA.
| | - Adam Smith
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA, USA.
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Deng Q, Liu Y, Li X, Yan B, Sun X, Tang W, Trang P, Yang Z, Gong H, Wang Y, Lu J, Chen J, Xia C, Xing X, Lu S, Liu F. Inhibition of human cytomegalovirus major capsid protein expression and replication by ribonuclease P-associated external guide sequences. RNA (NEW YORK, N.Y.) 2019; 25:645-655. [PMID: 30803999 PMCID: PMC6467005 DOI: 10.1261/rna.069682.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/21/2019] [Indexed: 05/08/2023]
Abstract
External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5' termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs. In the present research, an EGS variant was designed to be complementary to the mRNA coding for human cytomegalovirus (HCMV) major capsid protein (MCP), which is vital to form the viral capsid. In vitro, the EGS variant was about 80-fold more efficient in inducing human RNase P-mediated cleavage of the target mRNA than a natural tRNA-derived EGS. Moreover, the expressed variant and natural tRNA-originated EGSs led to a decrease of MCP expression by 98% and 73%-74% and a decrease of viral growth by about 10,000- and 200-fold in cells infected with HCMV, respectively. These results reveal direct evidence that the engineered EGS variant has higher efficiency in blocking the expression of HCMV genes and viral growth than the natural tRNA-originated EGS. Therefore, our findings imply that the EGS variant can be a potent candidate agent for the treatment of infections caused by HCMV.
Collapse
MESH Headings
- Base Pairing
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Cell Line, Transformed
- Cell Line, Tumor
- Cytomegalovirus/genetics
- Cytomegalovirus/metabolism
- Fibroblasts/metabolism
- Fibroblasts/virology
- Gene Expression Regulation, Viral
- Gene Targeting/methods
- Genetic Engineering/methods
- Host-Pathogen Interactions/genetics
- Humans
- Molecular Targeted Therapy
- Neuroglia/metabolism
- Neuroglia/virology
- Nucleic Acid Conformation
- Primary Cell Culture
- RNA Cleavage
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease P/chemistry
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Virus Replication/physiology
Collapse
Affiliation(s)
- Qiudi Deng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, California 94720, USA
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
| | - Xin Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bin Yan
- School of Public Health, University of California, Berkeley, California 94720, USA
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xu Sun
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
- Guangzhou Qinheli Biotechnolgies Inc, Guangzhou, Guangdong 510600, China
| | - Wei Tang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Zhu Yang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
- Guangzhou Qinheli Biotechnolgies Inc, Guangzhou, Guangdong 510600, China
| | - Hao Gong
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
| | - Yu Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
| | - Jie Lu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jun Chen
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Li W, Liu Y, Wang Y, Li R, Trang P, Tang W, Yang Z, Wang Y, Sun X, Xing X, Lu S, Liu F. Engineered RNase P Ribozymes Effectively Inhibit the Infection of Murine Cytomegalovirus in Animals. Am J Cancer Res 2018; 8:5634-5644. [PMID: 30555569 PMCID: PMC6276291 DOI: 10.7150/thno.27776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023] Open
Abstract
Rationales: Gene-targeting ribozymes represent promising nucleic acid-based gene interference agents for therapeutic application. We previously used an in vitro selection procedure to engineer novel RNase P-based ribozyme variants with enhanced targeting activity. However, it has not been reported whether these ribozyme variants also exhibit improved activity in blocking gene expression in animals. Methods and Results: In this report, R388-AS, a new engineered ribozyme variant, was designed to target the mRNA of assemblin (AS) of murine cytomegalovirus (MCMV), which is essential for viral progeny production. Variant R338-AS cleaved AS mRNA sequence in vitro at least 200 times more efficiently than ribozyme M1-AS, which originated from the wild type RNase P catalytic RNA sequence. In cultured MCMV-infected cells, R338-AS exhibited better antiviral activity than M1-AS and decreased viral AS expression by 98-99% and virus production by 15,000 fold. In MCMV-infected mice, R388-AS was more active in inhibiting AS expression, blocking viral replication, and improving animal survival than M1-AS. Conclusions: Our results provide the first direct evidence that novel engineered RNase P ribozyme variants with more active catalytic activity in vitro are also more effective in inhibiting viral gene expression in animals. Moreover, our studies imply the potential of engineering novel RNase P ribozyme variants with unique mutations to improve ribozyme activity for therapeutic application.
Collapse
|
11
|
Sun X, Chen W, He L, Sheng J, Liu Y, Vu GP, Yang Z, Li W, Trang P, Wang Y, Hai R, Zhu H, Lu S, Liu F. Inhibition of human cytomegalovirus immediate early gene expression and growth by a novel RNase P ribozyme variant. PLoS One 2017; 12:e0186791. [PMID: 29059242 PMCID: PMC5653336 DOI: 10.1371/journal.pone.0186791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously engineered new RNase P-based ribozyme variants with improved in vitro catalytic activity. In this study, we employed a novel engineered variant to target a shared mRNA region of human cytomegalovirus (HCMV) immediate early proteins 1 (IE1) and 2 (IE2), which are essential for the expression of viral early and late genes as well as viral growth. Ribozyme F-R228-IE represents a novel variant that possesses three unique base substitution point mutations at the catalytic domain of RNase P catalytic RNA. Compared to F-M1-IE that is the ribozyme derived from the wild type RNase P catalytic RNA sequence, the functional variant F-R228-IE cleaved the target mRNA sequence in vitro at least 100 times more efficiently. In cultured cells, expression of F-R228-IE resulted in IE1/IE2 expression reduction by 98–99% and in HCMV production reduction by 50,000 folds. In contrast, expression of F-M1-IE resulted in IE1/IE2 expression reduction by less than 80% and in viral production reduction by 200 folds. Studies of the ribozyme-mediated antiviral effects in cultured cells suggest that overall viral early and late gene expression and viral growth were inhibited due to the ribozyme-mediated reduction of HCMV IE1 and IE2 expression. Our results provide direct evidence that engineered RNase P ribozymes, such as F-R228-IE, can serve as a novel class of inhibitors for the treatment and prevention of HCMV infection. Moreover, these results suggest that F-R228-IE, with novel and unique mutations at the catalytic domain to enhance ribozyme activity, can be a candidate for the construction of effective agents for anti-HCMV therapy.
Collapse
Affiliation(s)
- Xu Sun
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Weijie Chen
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Lingling He
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jingxue Sheng
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Yujun Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Medicine, St. George’s University, Grenada, West Indies
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Zhu Yang
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
- Taizhou Institute of Virology, Taizhou, Jiangsu, China
| | - Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Phong Trang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yu Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
| | - Rong Hai
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hua Zhu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| | - Fenyong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| |
Collapse
|
12
|
Li W, Sheng J, Xu M, Vu GP, Yang Z, Liu Y, Sun X, Trang P, Lu S, Liu F. Inhibition of Murine Cytomegalovirus Infection in Animals by RNase P-Associated External Guide Sequences. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:322-332. [PMID: 29246310 PMCID: PMC5684469 DOI: 10.1016/j.omtn.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 11/21/2022]
Abstract
External guide sequence (EGS) RNAs are associated with ribonuclease P (RNase P), a tRNA processing enzyme, and represent promising agents for gene-targeting applications as they can direct RNase-P-mediated cleavage of a target mRNA. Using murine cytomegalovirus (MCMV) as a model system, we examined the antiviral effects of an EGS variant, which was engineered using in vitro selection procedures. EGSs were used to target the shared mRNA region of MCMV capsid scaffolding protein (mCSP) and assemblin. In vitro, the EGS variant was 60 times more active in directing RNase P cleavage of the target mRNA than the EGS originating from a natural tRNA. In MCMV-infected cells, the variant reduced mCSP expression by 92% and inhibited viral growth by 8,000-fold. In MCMV-infected mice hydrodynamically transfected with EGS-expressing constructs, the EGS variant was more effective in reducing mCSP expression, decreasing viral production, and enhancing animal survival than the EGS originating from a natural tRNA. These results provide direct evidence that engineered EGS variants with higher targeting activity in vitro are also more effective in reducing gene expression in animals. Furthermore, our findings imply the possibility of engineering potent EGS variants for therapy of viral infections.
Collapse
Affiliation(s)
- Wei Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jingxue Sheng
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mengqiong Xu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhu Yang
- Jiangsu Affynigen Biotechnolgies, Inc., Taizhou, Jiangsu 225300, China; Guangzhou Qinheli Biotechnolgies, Inc., Guangzhou, Guangdong 510600, China
| | - Yujun Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, St. George's University, Grenada, West Indies; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xu Sun
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Guangzhou Qinheli Biotechnolgies, Inc., Guangzhou, Guangdong 510600, China
| | - Phong Trang
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Antisense technologies in the studying of Toxoplasma gondii. J Microbiol Methods 2015; 138:93-99. [PMID: 26724749 DOI: 10.1016/j.mimet.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/13/2015] [Accepted: 12/17/2015] [Indexed: 11/23/2022]
Abstract
This review covers a brief history of antisense RNAs and its applications, and summarizes the current stage of antisense technologies used in Toxoplasma gondii, a fascinating model organism with a unique characteristic blend of genetic regulatory systems normally found in plants or animals. Based on the current knowledge of regulatory RNAs and non-coding RNA (ncRNA), the antisense technologies are reviewed according to the classification of ncRNAs, which are roughly categorized into small, ranging from ~20-200 nucleotides in length, and long >200 nucleotides. Techniques utilizing small regulatory RNAs such as siRNA, miRNA, antagomirs, ribozymes and morpholino oligomers are discussed along with long non-coding RNA (lncRNA) including antisense and double stranded. These antisense technologies can be used in forward and reverse genetics studies. The future of technologies is limitless, particularly by combining these technologies with conventional methods, and should allow for ever greater understanding of gene regulation of the organism and related pathogenic microorganisms.
Collapse
|
14
|
Hameş EE, Demir T. Microbial ribonucleases (RNases): production and application potential. World J Microbiol Biotechnol 2015; 31:1853-62. [PMID: 26433394 DOI: 10.1007/s11274-015-1945-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/07/2015] [Indexed: 01/15/2023]
Abstract
Ribonuclease (RNase) is hydrolytic enzyme that catalyzes the cleavage of phosphodiester bonds in RNA. RNases play an important role in the metabolism of cellular RNAs, such as mRNA and rRNA or tRNA maturation. Besides their cellular roles, RNases possess biological activity, cell stimulating properties, cytotoxicity and genotoxicity. Cytotoxic effect of particular microbial RNases was comparable to that of animal derived counterparts. In this respect, microbial RNases have a therapeutic potential as anti-tumor drugs. The significant development of DNA vaccines and the progress of gene therapy trials increased the need for RNases in downstream processes. In addition, RNases are used in different fields, such as food industry for single cell protein preparations, and in some molecular biological studies for the synthesis of specific nucleotides, identifying RNA metabolism and the relationship between protein structure and function. In some cases, the use of bovine or other animal-derived RNases have increased the difficulties due to the safety and regulatory issues. Microbial RNases have promising potential mainly for pharmaceutical purposes as well as downstream processing. Therefore, an effort has been given to determination of optimum fermentation conditions to maximize RNase production from different bacterial and fungal producers. Also immobilization or strain development experiments have been carried out.
Collapse
Affiliation(s)
- E Esin Hameş
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Tuğçe Demir
- Department of Chemical Engineering, Kocaeli University, Umut Tepe Yerleşkesi, 41380, Kocaeli, Turkey
| |
Collapse
|
15
|
RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins. Viruses 2015; 7:3345-60. [PMID: 26114473 PMCID: PMC4517104 DOI: 10.3390/v7072775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/08/2015] [Accepted: 06/18/2015] [Indexed: 11/17/2022] Open
Abstract
An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%–99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.
Collapse
|
16
|
Toumpeki C, Stamatopoulou V, Bikou M, Grafanaki K, Kallia-Raftopoulou S, Papaioannou D, Stathopoulos C, Drainas D. Targeting Ribonuclease P. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Ishikawa J, Furuta H, Ikawa Y. RNA tectonics (tectoRNA) for RNA nanostructure design and its application in synthetic biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:651-64. [PMID: 23836522 DOI: 10.1002/wrna.1185] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 12/24/2022]
Abstract
RNA molecules are versatile biomaterials that act not only as DNA-like genetic materials but also have diverse functions in regulation of cellular biosystems. RNA is capable of regulating gene expression by sequence-specific hybridization. This feature allows the design of RNA-based artificial gene regulators (riboregulators). RNA can also build complex two-dimensional (2D) and 3D nanostructures, which afford protein-like functions and make RNA an attractive material for nanobiotechnology. RNA tectonics is a methodology in RNA nanobiotechnology for the design and construction of RNA nanostructures/nanoobjects through controlled self-assembly of modular RNA units (tectoRNAs). RNA nanostructures designed according to the concept of RNA tectonics are also attractive as tools in synthetic biology, but in vivo RNA tectonics is still in the early stages. This review presents a summary of the achievements of RNA tectonics and its related researches in vitro, and also introduces recent developments that facilitated the use of RNA nanostructures in bacterial cells.
Collapse
Affiliation(s)
- Junya Ishikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
18
|
Jiang X, Chen YC, Gong H, Trang P, Lu S, Liu F. Ribonuclease P-mediated inhibition of human cytomegalovirus gene expression and replication induced by engineered external guide sequences. RNA Biol 2012; 9:1186-95. [PMID: 23018778 PMCID: PMC3579886 DOI: 10.4161/rna.21724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
External guide sequences (EGSs) are RNA molecules that can bind to a target mRNA and direct ribonuclease P (RNase P), a tRNA processing enzyme, for specific cleavage of the target mRNA. Using an in vitro selection procedure, we have previously generated EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the mRNAs coding for human cytomegalovirus (HCMV) capsid scaffolding protein (CSP) and assemblin, which are essential for viral capsid formation. The EGS variant was about 40-fold more active in directing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Moreover, a reduction of about 98% and 75% in CSP/assemblin gene expression and a reduction of 7000- and 250-fold in viral growth were observed in HCMV-infected cells that expressed the variant and the tRNA-derived EGS, respectively. Our study shows that the EGS variant is more effective in blocking HCMV gene expression and growth than the tRNA-derived EGS. Moreover, these results demonstrate the utility of highly active EGS RNA variants in gene targeting applications including anti-HCMV therapy.
Collapse
Affiliation(s)
- Xiaohong Jiang
- School of Public Health; University of California; Berkeley, CA USA
- School of Life Sciences; Nanjing University; Nanjing, Jiangsu China
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry; University of California; Berkeley, CA USA
| | - Hao Gong
- School of Public Health; University of California; Berkeley, CA USA
| | - Phong Trang
- School of Public Health; University of California; Berkeley, CA USA
| | - Sangwei Lu
- School of Public Health; University of California; Berkeley, CA USA
- Program in Comparative Biochemistry; University of California; Berkeley, CA USA
| | - Fenyong Liu
- School of Public Health; University of California; Berkeley, CA USA
- Program in Comparative Biochemistry; University of California; Berkeley, CA USA
| |
Collapse
|
19
|
Cai H, Santiago FS, Prado-Lourenco L, Wang B, Patrikakis M, Davenport MP, Maghzal GJ, Stocker R, Parish CR, Chong BH, Lieschke GJ, Wong TW, Chesterman CN, Francis DJ, Moloney FJ, Barnetson RSC, Halliday GM, Khachigian LM. DNAzyme Targeting c-jun Suppresses Skin Cancer Growth. Sci Transl Med 2012; 4:139ra82. [DOI: 10.1126/scitranslmed.3003960] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Zhang W, Li H, Li Y, Zeng Z, Li S, Zhang X, Zou Y, Zhou T. Effective inhibition of HCMV UL49 gene expression and viral replication by oligonucleotide external guide sequences and RNase P. Virol J 2010; 7:100. [PMID: 20482805 PMCID: PMC2885339 DOI: 10.1186/1743-422x-7-100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/18/2010] [Indexed: 12/03/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that typically causes asymptomatic infections in healthy individuals but may lead to serious complications in newborns and immunodeficient individuals. The emergence of drug-resistant strains of HCMV has posed a need for the development of new drugs and treatment strategies. Antisense molecules are promising gene-targeting agents for specific regulation of gene expression. External guide sequences (EGSs) are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. The UL49-deletion BAC of HCMV was significantly defective in growth in human foreskin fibroblasts. Therefore, UL49 gene may serve as a potential target for novel drug development to combat HCMV infection. In this study, DNA-based EGS molecules were synthesized to target the UL49 mRNA of human cytomegalovirus (HCMV). Results By cleavage activity assessing in vitro, the EGS aimed to the cleavage site 324 nt downstream from the translational initiation codon of UL49 mRNA (i.e. EGS324) was confirmed be efficient to direct human RNase P to cleave the target mRNA sequence. When EGS324 was exogenously administered into HCMV-infected human foreskin fibroblasts (HFFs), a significant reduction of ~76% in the mRNA and ~80% in the protein expression of UL49 gene, comparing with the cells transfected with control EGSs. Furthermore, a reduction of about 330-fold in HCMV growth were observed in HCMV-infected HFFs treated with the EGS. Conclusions These results indicated that UL49 gene was essential for replication of HCMV. Moreover, our study provides evidence that exogenous administration of a DNA-based EGS can be used as a potential therapeutic approach for inhibiting gene expression and replication of a human virus.
Collapse
Affiliation(s)
- WenJun Zhang
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Venkatesh S, Wower J, Byrne ME. Nucleic acid therapeutic carriers with on-demand triggered release. Bioconjug Chem 2009; 20:1773-82. [PMID: 19670897 DOI: 10.1021/bc900187b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biohybrid platforms such as synthetic polymer networks engineered from artificial and natural materials hold immense potential as drug and gene delivery vehicles. Here, we report the synthesis and characterization of novel polymer networks that release oligonucleotide sequences via enzymatic and physical triggers. Chemical monomers and acrylated oligonucleotides were copolymerized into networks, and phosphoimaging revealed that 70% of the oligonucleotides were incorporated into the networks. We observed that the immobilized oligonucleotides were readily cleaved when the networks were incubated with the type II restriction enzyme BamHI. The diffusion of the cleaved fragments through the macromolecular chains resulted in relatively constant release profiles very close to zero-order. To our knowledge, this is the first study which harnesses the sequence-specificity of restriction endonucleases as triggering agents for the cleavage and release of oligonucleotide sequences from a synthetic polymer network. The polymer networks exhibited an oligonucleotide diffusion coefficient of 5.6 x 10(-8) cm(2)/s and a diffusional exponent of 0.92. Sigmoidal temperature responsive characteristics of the networks matched the theoretical melting temperature of the oligonucleotides and indicated a cooperative melting transition of the oligonucleotides. The networks were also triggered to release a RNA-cleaving deoxyribozyme, which degraded a HIV-1 mRNA transcript in vitro. To tailor release profiles of the oligonucleotides, we controlled the structure of the macromolecular architecture of the networks by varying their cross-linking content. When incubated with DNase I, networks of cross-linking content 0.15%, 0.22%, and 0.45% exhibited oligonucleotide diffusion coefficients of 1.67 x 10(-8), 7.65 x 10(-9), and 2.7 x 10(-9) cm(2)/s, and diffusional exponents of 0.55, 0.8, and 0.8, respectively. The modular nature of our platform promises to open new avenues for the creation and optimization of a rich toolbox of novel drug and gene delivery platforms. We anticipate further inquiry into nucleic acid based programmable on-demand switches and modulatory devices of exquisite sensitivity and control.
Collapse
Affiliation(s)
- Siddarth Venkatesh
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | | | | |
Collapse
|
22
|
Generation of an external guide sequence library for a reverse genetic screen in Caenorhabditis elegans. BMC Biotechnol 2009; 9:47. [PMID: 19457250 PMCID: PMC2696436 DOI: 10.1186/1472-6750-9-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 05/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background A method for inhibiting the expression of particular genes using external guide sequences (EGSs) has been developed in bacteria, mammalian cells and maize cells. Results To examine whether EGS technology can be used to down-regulate gene expression in Caenorhabditis elegans (C. elegans), we generated EGS-Ngfp-lacZ and EGS-Mtgfp that are targeted against Ngfp-lacZ and Mtgfp mRNA, respectively. These EGSs were introduced, both separately and together, into the C. elegans strain PD4251, which contains Ngfp-lacZ and Mtgfp. Consequently, the expression levels of Ngfp-lacZ and Mtgfp were affected by EGS-Ngfp-lacZ and EGS-Mtgfp, respectively. We further generated an EGS library that contains a randomized antisense domain of tRNA-derived EGS ("3/4 EGS"). Examination of the composition of the EGS library showed that there was no obvious bias in the cloning of certain EGSs. A subset of EGSs was randomly chosen for screening in the C. elegans strain N2. About 6% of these EGSs induced abnormal phenotypes such as P0 slow postembryonic growth, P0 larval arrest, P0 larval lethality and P0 sterility. Of these, EGS-35 and EGS-83 caused the greatest phenotype changes, and their target mRNAs were identified as ZK858.7 mRNA and Lin-13 mRNA, respectively. Conclusion EGS technology can be used to down-regulate gene expression in C. elegans. The EGS library is a research tool for reverse genetic screening in C. elegans. These observations are potentially of great importance to further our understanding and use of C. elegans genomics.
Collapse
|
23
|
Xiao G, Lundblad EW, Izadjoo M, Altman S. Inhibition of expression in Escherichia coli of a virulence regulator MglB of Francisella tularensis using external guide sequence technology. PLoS One 2008; 3:e3719. [PMID: 19005569 PMCID: PMC2579583 DOI: 10.1371/journal.pone.0003719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 10/24/2008] [Indexed: 11/18/2022] Open
Abstract
External guide sequences (EGSs) have successfully been used to inhibit expression of target genes at the post-transcriptional level in both prokaryotes and eukaryotes. We previously reported that EGS accessible and cleavable sites in the target RNAs can rapidly be identified by screening random EGS (rEGS) libraries. Here the method of screening rEGS libraries and a partial RNase T1 digestion assay were used to identify sites accessible to EGSs in the mRNA of a global virulence regulator MglB from Francisella tularensis, a Gram-negative pathogenic bacterium. Specific EGSs were subsequently designed and their activities in terms of the cleavage of mglB mRNA by RNase P were tested in vitro and in vivo. EGS73, EGS148, and EGS155 in both stem and M1 EGS constructs induced mglB mRNA cleavage in vitro. Expression of stem EGS73 and EGS155 in Escherichia coli resulted in significant reduction of the mglB mRNA level coded for the F. tularensis mglB gene inserted in those cells.
Collapse
Affiliation(s)
- Gaoping Xiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Eirik W. Lundblad
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromso, Norway
| | - Mina Izadjoo
- Armed Forces Institute of Pathology, Washington, D. C., United States of America
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
24
|
Trafficking through the Rev/RRE pathway is essential for efficient inhibition of human immunodeficiency virus type 1 by an antisense RNA derived from the envelope gene. J Virol 2008; 83:940-52. [PMID: 18971264 DOI: 10.1128/jvi.01520-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A human immunodeficiency virus type 1 (HIV-1)-based vector expressing an antisense RNA directed against HIV-1 is currently in clinical trials. This vector has shown a remarkable ability to inhibit HIV-1 replication, in spite of the fact that therapeutic use of unmodified antisense RNAs has generally been disappointing. To further analyze the basis for this, we examined the effects of different plasmid-based HIV-1 long-terminal-repeat-driven constructs expressing antisense RNA to the same target region in HIV-1 but containing different export elements. Two of these vectors were designed to express antisense RNA containing either a Rev response element (RRE) or a Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE). In the third vector, no specific transport element was provided. Efficient inhibition of HIV-1 virus production was obtained with the RRE-driven antisense RNA. This construct also efficiently inhibited p24 production from a pNL4-3 provirus that used the MPMV CTE for RNA export. In contrast, little inhibition was observed with the constructs lacking an RRE. Furthermore, when the RRE-driven antisense RNA was redirected to the Tap/Nxf1 pathway, utilized by the MPMV CTE, through the expression of a RevM10-Tap fusion protein, the efficiency of antisense inhibition was greatly reduced. These results indicate that efficient inhibition requires trafficking of the antisense RNA through the Rev/RRE pathway. Mechanistic studies indicated that the Rev/RRE-mediated inhibition did not involve either nuclear retention or degradation of target mRNA, since target RNA was found to export and associate normally with polyribosomes. However, protein levels were significantly reduced. Taken together, our results suggest a new mechanism for antisense inhibition of HIV mediated by Rev/RRE.
Collapse
|