1
|
Farhadi A, Liu Y, Xu C, Han T, Wang X, Li E. Evidence from transcriptome analysis unravelled the roles of eyestalk in salinity adaptation in Pacific white shrimp (Litopenaeus vannamei). Gen Comp Endocrinol 2022; 329:114120. [PMID: 36055397 DOI: 10.1016/j.ygcen.2022.114120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022]
Abstract
Eyestalk is considered the main neuroendocrine organ in crustaceans. Eyestalk regulates reproduction, molting, and energy metabolism by secreting several neurohormones. However, the role of eyestalk in salinity adaptation in crustaceans remains unclear. To reveal the role of eyestalk in salinity adaptation in Litopenaeus vannamei, we performed RNA-seq to compare the transcriptomic response of the eyestalk under low salinity (salinity 3) with that of the control group (salinity 25) for 8 weeks. A total of 479 mRNAs, including 150 upregulated and 329 downregulated mRNAs, were differentially expressed between the two salinity groups. The majority of the differentially expressed genes (DEGs) were enriched in biological pathways related to osmoregulation, metabolism and energy production, and oxidative stress. The most important DEGs associated with osmoregulation were CA4, ATP1A, ATP2B, ABCB1, ABCC4, PhoA, PhoB, NOS1, ACE, ANPEP, and the V-type H+-ATPase E-subunit. The metabolism-related DEGs were divided into three main categories: carbohydrate and energy metabolism (i.e., G6PC, UGT), protein and amino acid metabolism (i.e., SLC15A1, AhcY, GFAT), and lipid and fatty acid metabolism (i.e., GPAT3_4, CYP2J). The key DEGs related to the oxidative stress response were UGT, NDUFB1, QCR7, QCR8, P5CDh, COX6B, and CES1. These results provide evidence for the existence of an eyestalk-salinity adaptation-stress endocrine axis in L. vannamei. These findings provide a better understanding of the molecular mechanism underlying salinity adaptation in L. vannamei.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yan Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaodan Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
2
|
Pinto-Almeida A, Mendes TMF, Ferreira P, Abecasis AB, Belo S, Anibal FF, Allegretti SM, Galinaro CA, Carrilho E, Afonso A. A Comparative Proteomic Analysis of Praziquantel-Susceptible and Praziquantel-Resistant Schistosoma mansoni Reveals Distinct Response Between Male and Female Animals. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.664642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a chronic neglected tropical disease saddling millions of people in the world, mainly children living in poor rural areas. Praziquantel (PZQ) is currently the only drug used for the treatment and control of this disease. However, the extensive use of this drug has brought concern about the emergence of PZQ-resistance/tolerance by Schistosoma mansoni. Studies of Schistosoma spp. genome, transcriptome, and proteome are crucial to better understand this situation. In this in vitro study, we compare the proteomes of a S. mansoni variant strain stably resistant to PZQ and isogenic to its fully susceptible parental counterpart, identifying proteins from male and female adult parasites of PZQ-resistant and PZQ-susceptible strains, exposed and not exposed to PZQ. A total of 60 Schistosoma spp. proteins were identified, some of which present or absent in either strain, which may putatively be involved in the PZQ-resistance phenomenon. These proteins were present in adult parasites not exposed to PZQ, but some of them disappeared when these adult parasites were exposed to the drug. Understanding the development of PZQ-resistance in S. mansoni is crucial to prolong the efficacy of the current drug and develop markers for monitoring the potential emergence of drug resistance.
Collapse
|
3
|
Liang Q, Wu X, Yang P, Kong J, Wei W, Qiao X, Liu Y, Wang W. The role of delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDh) in the Pacific white shrimp (Litopenaeus vannamei) during biotic and abiotic stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:1-11. [PMID: 30592983 DOI: 10.1016/j.aquatox.2018.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Proline (Pro) metabolism is intimately associated with stress adaptation. The catabolism of Pro includes two dehydrogenation reactions catalyzed by proline dehydrogenase (ProDH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDh). P5CDh is a mitochondrial matrix NAD+-dependent dehydrogenase that is critical in preventing P5C-Pro intensive cycling and avoiding ROS production from electron run-off. Little is known about the roles of P5CDh in invertebrates, however. We cloned the P5CDh sequence in the Pacific white shrimp, Litopenaeus vannamei, and found that LvP5CDh is expressed predominantly in pleopod, hepatopancreas and gill. Subcellular localization analysis revealed that LvP5CDh protein was mainly found in the cytoplasm. In addition, overexpressing LvP5CDh in cells reduced ROS formation and inhibited apoptosis induced by LC50 Cd2+. Shrimp were exposed to various stress factors including infection with Vibrio alginolyticus, (½ LC50 and LC50) Cd2+, acid (pH 5.6) and alkali stress (pH 9.3). Both biotic and abiotic stress resulted in increased LvP5CDh expression and Pro accumulation; V. alginolyticus infection, pH 9.3 and LC50 Cd2+ stress apparently stimulated the Glu pathway of Pro synthesis, while pH 5.6 and ½ LC50 Cd2+ stress promoted the Orn pathway of Pro synthesis. Silencing of Lvp53 in shrimp attenuated LvP5CDh expression during Cd2+ stress, but had no effect on LvP5CDh mRNA levels if no Cd2+ stress was imposed. Our study contributes to the functional characterization of LvP5CDh in biotic and abiotic stress and reveals it to protect against ROS generation, damage to the cell, including the mitochondria, and apoptosis. Thus, LvP5CDh plays a critical role in immune defense and antioxidant responses.
Collapse
Affiliation(s)
- QingJian Liang
- College of Life Science, South China Normal University, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - XuJian Wu
- College of Life Science, South China Normal University, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Pan Yang
- College of Life Science, South China Normal University, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - JinRong Kong
- College of Life Science, South China Normal University, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Wei Wei
- College of Life Science, South China Normal University, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Xueli Qiao
- College of Life Science, South China Normal University, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- College of Life Science, South China Normal University, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Weina Wang
- College of Life Science, South China Normal University, Guangzhou 510631, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
4
|
Shi X, Lin X, Zhu Y, Ma Y, Li Y, Xu X, Zhou G, Li C. Effects of Dietary Protein from Different Sources on Biotransformation, Antioxidation, and Inflammation in the Rat Liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8584-8592. [PMID: 30060650 DOI: 10.1021/acs.jafc.8b01717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the effects of different sources of meat protein on liver metabolic enzymes were investigated. Rats were fed for 90 days with semisynthetic diets in which casein was fully replaced by isolated soybean, fish, chicken, pork, or beef proteins. Then, liver proteomics was performed using iTRAQ and LC-ESI-MS/MS. The results indicated that intake of meat protein diets significantly reduced the protein levels of CYP450s, GSTs, UGTs, and SULTs compared to those of the casein and soybean protein diet groups. The total antioxidant capacity and lipid peroxidation values did not differ between four meat protein diet groups and the casein diet group. However, GSH activity in the fish, chicken, and beef protein groups was significantly higher than those of the casein and soybean protein groups. The beef protein diet significantly upregulated the expression of immune-related proteins. The Keap1-Nrf2-ARE signaling pathway was suggested to involve the diet-mediated regulation of biotransformation, inflammation, and redox status.
Collapse
Affiliation(s)
- Xuebin Shi
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Xisha Lin
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yingying Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yafang Ma
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Yingqiu Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovative Center of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210095 , P.R. China
| |
Collapse
|
5
|
Matsumoto A. [Importance of an Aldehyde Dehydrogenase 2 Polymorphism in Preventive Medicine]. Nihon Eiseigaku Zasshi 2018; 73:9-20. [PMID: 29386454 DOI: 10.1265/jjh.73.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike genetic alterations in other aldehyde dehydrogenase (ALDH) isozymes, a defective ALDH2 polymorphism (rs671), which is carried by almost half of East Asians, does not show a clear phenotype such as a shortened life span. However, impacts of a defective ALDH2 allele, ALDH2*2, on various disease risks have been reported. As ALDH2 is responsible for the detoxification of endogenous aldehydes, a negative effect of this polymorphism is predicted, but bidirectional effects have been actually observed and the mechanisms underlying such influences are often complex. One reason for this complexity may be the existence of compensatory aldehyde detoxification systems and the secondary effects of these systems. There are many issues to be addressed with regard to the ALDH2 polymorphism in the field of preventive medicine, including the following concerns. First, ALDH2 in the fetal stage plays a role in aldehyde detoxification; therefore, prenatal health effects of environmental aldehyde exposure are of concern for ALDH2*2-carrying fetuses. Second, ALDH2*2 carriers are at high risk of drinking-related cancers. However, their drinking habits result in less worsening of physiological findings, such as energy metabolism index and liver functions, compared with non-ALDH2*2 carriers, and therefore opportunities to detect excessive drinking can be lost. Third, personalized medicine such as personalized prescriptions for ALDH2*2 carriers will be required in the clinical setting, and accumulation of evidence is awaited. Lastly, since the ALDH2 polymorphism is not considered in workers' limits of exposure to aldehydes and their precursors, efforts to lower exposure levels beyond legal standards are required.
Collapse
Affiliation(s)
- Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine
| |
Collapse
|
6
|
Mantilla BS, Paes LS, Pral EMF, Martil DE, Thiemann OH, Fernández-Silva P, Bastos EL, Silber AM. Role of Δ1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi. J Biol Chem 2015; 290:7767-90. [PMID: 25623067 PMCID: PMC4367278 DOI: 10.1074/jbc.m114.574525] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/30/2014] [Indexed: 01/03/2023] Open
Abstract
Proline is crucial for energizing critical events throughout the life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease. The proline breakdown pathway consists of two oxidation steps, both of which produce reducing equivalents as follows: the conversion of proline to Δ(1)-pyrroline-5-carboxylate (P5C), and the subsequent conversion of P5C to glutamate. We have identified and characterized the Δ(1)-pyrroline-5-carboxylate dehydrogenase from T. cruzi (TcP5CDH) and report here on how this enzyme contributes to a central metabolic pathway in this parasite. Size-exclusion chromatography, two-dimensional gel electrophoresis, and small angle x-ray scattering analysis of TcP5CDH revealed an oligomeric state composed of two subunits of six protomers. TcP5CDH was found to complement a yeast strain deficient in PUT2 activity, confirming the enzyme's functional role; and the biochemical parameters (Km, kcat, and kcat/Km) of the recombinant TcP5CDH were determined, exhibiting values comparable with those from T. cruzi lysates. In addition, TcP5CDH exhibited mitochondrial staining during the main stages of the T. cruzi life cycle. mRNA and enzymatic activity levels indicated the up-regulation (6-fold change) of TcP5CDH during the infective stages of the parasite. The participation of P5C as an energy source was also demonstrated. Overall, we propose that this enzymatic step is crucial for the viability of both replicative and infective forms of T. cruzi.
Collapse
Affiliation(s)
- Brian S Mantilla
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Lisvane S Paes
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Elizabeth M F Pral
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Daiana E Martil
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Otavio H Thiemann
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Patricio Fernández-Silva
- the Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza Spain
| | - Erick L Bastos
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, 13560-590 São Paulo, Brazil, and
| | - Ariel M Silber
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil,
| |
Collapse
|
7
|
Deletion of Drosophila Nopp140 induces subcellular ribosomopathies. Chromosoma 2014; 124:191-208. [PMID: 25384888 DOI: 10.1007/s00412-014-0490-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 09/04/2014] [Accepted: 10/02/2014] [Indexed: 01/18/2023]
Abstract
The nucleolar and Cajal body phosphoprotein of 140 kDa (Nopp140) is considered a ribosome assembly factor, but its precise functions remain unknown. To approach this problem, we deleted the Nopp140 gene in Drosophila using FLP-FRT recombination. Genomic PCR, reverse transcriptase-PCR (RT-PCR), and immunofluorescence microscopy confirmed the loss of Nopp140, its messenger RNA (mRNA), and protein products from all tissues examined. Nopp140-/- larvae arrested in the second instar stage and most died within 8 days. While nucleoli appeared intact in Nopp140-/- cells, the C/D small nucleolar ribonucleoprotein (snoRNP) methyltransferase, fibrillarin, redistributed to the nucleoplasm in variable amounts depending on the cell type; RT-PCRs showed that 2'-O-methylation of ribosomal RNA (rRNA) in Nopp140-/- cells was reduced at select sites within both the 18S and 28S rRNAs. Ultrastructural analysis showed that Nopp140-/- cells were deficient in cytoplasmic ribosomes, but instead contained abnormal electron-dense cytoplasmic granules. Immunoblot analysis showed a loss of RpL34, and metabolic labeling showed a significant drop in protein translation, supporting the loss of functional ribosomes. Northern blots showed that pre-RNA cleavage pathways were generally unaffected by the loss of Nopp140, but that R2 retrotransposons that naturally reside within the 28S region of normally silent heterochromatic Drosophila ribosomal DNA (rDNA) genes were selectively expressed in Nopp140-/- larvae. Unlike copia elements and the related R1 retrotransposon, R2 expression appeared to be preferentially dependent on the loss of Nopp140 and not on environmental stresses. We believe the phenotypes described here define novel intracellular ribosomopathies resulting from the loss of Nopp140.
Collapse
|
8
|
Singh S, Brocker C, Koppaka V, Ying C, Jackson B, Matsumoto A, Thompson DC, Vasiliou V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 2013; 56:89-101. [PMID: 23195683 PMCID: PMC3631350 DOI: 10.1016/j.freeradbiomed.2012.11.010] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes.
Collapse
Affiliation(s)
- Surendra Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chad Brocker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vindhya Koppaka
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chen Ying
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brian Jackson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine, Saga 849-8501, Japan
| | - David C. Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Shen Y, Zhang Y, Yang C, Lan Y, Liu L, Liu S, Chen Z, Ren G, Wan J. Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice. PLANTA 2012; 235:433-441. [PMID: 21960163 DOI: 10.1007/s00425-011-1477-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/24/2011] [Indexed: 05/31/2023]
Abstract
Aldehyde dehydrogenase proteins consist of a superfamily and the family 7 (ALDH7) is a typical group with highly conserved proteins across species. It catalyzes oxidation of α-aminoadipic semialdehyde (AASA) in lysine degradation, participates in protection against hyperosmotic stress, and detoxifies aldehydes in human; however, its function in plants has been much less documented. Here we reported a mutant with yellow-colored endosperm in rice, and showed that the yellow endosperm was caused by mutation of OsALDH7. OsALDH7 is expressed in all tissues detected, with the highest level in mature seeds. We found that oryzamutaic acid A accumulated during late seed development and after a year-long storage in the colored endosperm, whereas it was undetectable in the wild type endosperm. Moreover, lysine degradation was enhanced in yeast over-expressing OsALDH7 and as a result, content of lysine, glutamate and saccharopine was changed, suggesting a role of OsALDH7 in lysine catabolism.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
He F, DiMario PJ. Drosophila delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDh) is required for proline breakdown and mitochondrial integrity-Establishing a fly model for human type II hyperprolinemia. Mitochondrion 2010; 11:397-404. [PMID: 21168532 DOI: 10.1016/j.mito.2010.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/01/2010] [Accepted: 12/03/2010] [Indexed: 11/25/2022]
Abstract
Delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDh) is a nuclear-encoded mitochondrial enzyme that catalyzes the second step in proline degradation. Mutations in human P5CDh cause type II hyperprolinemia, a complex syndrome displaying increased serum proline and mental disabilities. Conceptual gene CG7145 in Drosophila melanogaster encodes the orthologous DmP5CDh1. The mutant allele CG7145(f04633) contains a piggyBac transposon that truncates the enzyme by 83 residues. Heterozygous (CG7145(f04633)/TM3) individuals developed normally, while homozygous (CG7145(f04633)/CG7145(f04633)) individuals displayed proline levels twice that of normal, swollen mitochondria, and ultimately larval and pupal lethality. We believe this is the first correlation between the loss of P5CDh and morphological defects in mitochondria.
Collapse
Affiliation(s)
- Fang He
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
11
|
Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 2008; 4:697-720. [PMID: 18611112 DOI: 10.1517/17425255.4.6.697] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aldehydes are highly reactive molecules. While several non-P450 enzyme systems participate in their metabolism, one of the most important is the aldehyde dehydrogenase (ALDH) superfamily, composed of NAD(P)+-dependent enzymes that catalyze aldehyde oxidation. OBJECTIVE This article presents a review of what is currently known about each member of the human ALDH superfamily including the pathophysiological significance of these enzymes. METHODS Relevant literature involving all members of the human ALDH family was extensively reviewed, with the primary focus on recent and novel findings. CONCLUSION To date, 19 ALDH genes have been identified in the human genome and mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria and pyridoxine-dependent seizures. ALDH enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. Finally, ALDH enzymes display multiple catalytic and non-catalytic functions including ester hydrolysis, antioxidant properties, xenobiotic bioactivation and UV light absorption.
Collapse
Affiliation(s)
- Satori A Marchitti
- University of Colorado Health Sciences Center, Molecular Toxicology & Environmental Health Sciences Program, Department of Pharmaceutical Sciences, 4200 East Ninth Avenue, C238, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
12
|
Mohamed SA, Mohamed TM, Fahmy AS, El-Badry MO, Abdel-Gany SS. Fasciola gigantica: enzymes of the ornithine-proline-glutamate pathway--characterization of delta1-pyrroline-5-carboxylate dehydrogenase. Exp Parasitol 2008; 118:47-53. [PMID: 17655846 DOI: 10.1016/j.exppara.2007.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 01/02/2023]
Abstract
Ornithine aminotransferase (OAT), proline oxidase (PO), Delta 1-pyrroline-5-carboxylate reductase (P5CR), and Delta 1-pyrroline-5-carboxylate dehydrogenase (P5CD) were assessed in Fasciola gigantica. All enzymes are involved in the conversion of ornithine into glutamate and proline. High levels of P5CD suggest that the direction of the metabolic flow from ornithine is more toward glutamate than proline. F. gigantica P5CD1 and P5CD2 were separated from the majority of contaminating proteins in crude homogenate using a CM-cellulose column. A Sephacryl S-200 column was employed for P5CD2 to obtain pure enzyme with increased specific activity. The molecular mass of P5CD2 was estimated to be 50kDa using a Sephacryl S-200 column and SDS-PAGE. It migrated as a single band on SDS-PAGE, indicating a monomeric enzyme. P5CD2 had Km values of 1.44mM and 0.37mM for NAD and P5C, respectively. P5CD2 oxidized a number of aliphatic and aromatic aldehydes, where the aromatic compounds had higher affinity toward the enzyme. All amino acids examined had partial inhibitory effects on the enzyme. While 3mM AMP caused 31% activation of enzyme, 3mM ADP and ATP inhibited activity by 18% and 23%, respectively. Apart from Cu2+, the divalent cations that were studied caused partial inhibitory effects on the enzyme.
Collapse
Affiliation(s)
- Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
13
|
Itoh H, Suzuta T, Hoshino T, Takaya N. Novel dehydrogenase catalyzes oxidative hydrolysis of carbon-nitrogen double bonds for hydrazone degradation. J Biol Chem 2007; 283:5790-800. [PMID: 18096698 DOI: 10.1074/jbc.m709027200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds.
Collapse
Affiliation(s)
- Hideomi Itoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
14
|
Roger E, Mitta G, Moné Y, Bouchut A, Rognon A, Grunau C, Boissier J, Théron A, Gourbal BEF. Molecular determinants of compatibility polymorphism in the Biomphalaria glabrata/Schistosoma mansoni model: new candidates identified by a global comparative proteomics approach. Mol Biochem Parasitol 2007; 157:205-16. [PMID: 18083248 DOI: 10.1016/j.molbiopara.2007.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/23/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
The co-evolutionary dynamics that exist in host-parasite interactions sometimes lead to compatibility polymorphisms, the molecular bases of which are rarely investigated. To identify key molecules that are involved in this phenomenon in the Schistosoma mansoni/Biomphalaria glabrata model, we developed a comparative proteomics approach using the larval stages that interact with the invertebrate host. We used qualitative and quantitative analyses to compare the total proteomes of primary sporocysts from compatible and incompatible parasite strains. The differentially expressed proteins thus detected belong to three main functional groups: (i) scavengers of reactive oxygen species, (ii) components of primary metabolism, and (iii) mucin-like proteins. We discuss the putative roles played by these protein families as determinants of compatibility polymorphism. Since mucins are known to play key roles in the host-parasite interplay, we consider the newly discovered S. mansoni mucin-like proteins (SmMucin-like) as the most promising candidates for influencing the fate of host-parasite interactions. An analysis of their expression is presented in a paper published in the same journal issue.
Collapse
Affiliation(s)
- Emmanuel Roger
- Parasitologie Fonctionnelle et Evolutive, UMR 5244, CNRS, EPHE, UPVD, Biologie & Ecologie Tropicale et Méditerranéenne, Université de Perpignan, Perpignan Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|